Efficiency - 187

Table 5.2. Storage Requirements Based on Integer Size

Length Number of Bytes Required
0<z<64 1
64 <z < 16,384 2
16,384 < z < 4, 194, 304 3
4,194,304 <z < 1,073,741,824 4

tifier immediately preceding it are computed. For the case in which no other
document identifier exists, a compressed version of the document identifier is
stored. Using this technique, a high proportion of relatively low numerical
values is assured.

This scheme effectively reduces the domain of the identifiers, allowing them
to be stored in a more concise format. Subsequently, the following method is
applied to compress the data. For a given input value, the two left-most bits
are reserved to store a count for the number of bytes that are used in storing the
value. There are four possible combinations of two bit representations; thus, a
two bit length indicator is used for all document identifiers. Integers are stored
in either 6, 14, 22, or 30 bits. Optimally, a reduction of each individual data
record size by a factor of four is obtained by this method since, in the best case,
all values are less than 26 = 64 and can be stored in a single byte. Without
compression, four bytes are used for all document identifiers.

For each value to be compressed, the minimum number of bytes required
to store this value is computed. (Note: this statement is not exactly accurate.
Since there is no need for zero displacement, it is possible to store a displace-
ment of one less than is actually needed. Since such a storage approach always
requires an additional increment operation, and it only favors borderline con-
ditions, it is seldom used.) Table 5.2 indicates the range of values that can be
stored, as well as the length indicator for one, two, three, and four bytes. For
document collections exceeding 230 documents, this scheme can be extended
to include a three bit length indicator which extends the range to 2% — 1.

For term frequencies, there is no concept of using an offset between the
successive values as each frequency is independent of the preceding value.
However, the same encoding scheme can be used. Since we do not expect a
document to contain a term more than 2!% = 32, 768 times, either one or two
bytes are used to store the value with one bit serving as the length indicator.

188 INFORMATION RETRIEVAL:ALGORITHMS AND HEURIS TICS

Table 5.3. Byte-Aligned Compression

Value | Compressed Bit String

1 | 00000001
2 | 00000010
4 | 00000100
63 | 00111111

180 | 01 000000 10110100

Table 5.4. Baseline: No Compression

Value | Uncompressed Bit String
1 { 00000000 00000000 00000000 00000001
3 | 00000000 00000000 00000000 0000001 |
7 | 00000000 00000000 00000000 00000111
70 | 00000000 00000000 00C00000 01000110
250 | 00000000 00000000 00000000 11111010

5.1.2.2 Example: Fixed Length Compression

Consider an entry for an arbitrary term, ¢;, which indicates that £, occurs
in documents 1, 3, 7, 70, and 250. Byte-aligned (BA) compression uses the
leading two high order bits to indicate the number of bytes required to represent
the value. For the first four values, only one byte is required; for the final value,
180, two bytes are required. Note that only the differences between entries in
the posting list must be computed. The difference of 250 — 70 —= 180 is all
that must be computed for this final value. The values and their corresponding
compressed bit strings are shown in Table 5.3.

Using no compression, the five entries in the posting list require four bytes
each for a total of twenty bytes. The values and their corresponding com-
pressed bit strings are shown in Table 5.4.

In this example, uncompressed data requires 160 bits, while BA compres-
sion requires only 48 bits.

5.1.3 Variable Length Index Compression

Moffat and Zobel also use the differences in the posting list. They capi-
talize on the fact that for most long posting lists, the difference between two

Efficiency 189

Table 5.5. Gamma Encoding: First Eight Integers

x| v

1]0
2100
3101

4| 11000 _
5[11001
6| 11010
7| 11011
8 [1110 000

entries is relatively small. They first mention that patterns can be seen in these
differences and that Huffman encoding provides the best compression. In this
method, the frequency distribution of all of the offsets is obtained through an
initial pass over the text, a compression scheme is developed based on the
frequency distribution, and a second pass uses the new compression scheme.
For example, if it was found that an offset of one has the highest frequency
throughout the entire index, the scheme would use a single bit to represent the
offset of one.

Moffat and Zobel use a family of universal codes described in [Elias, 1975].
This code represents an integer with 2|logeoz| + 1 bits. The first |logox |
bits are the unary representation of [logaz]. (Unary representation is a base
one representation of integers using only the digit one. The number 5,0 is
represented as 11111,.) After the leading unary representation, the next bit is
a single stop bit of zero. At this point, the highest power of two that does not
exceed z has been represented. The next |logox | bits represent the remainder
of z — 2U°822] in binary.

As an example, consider the compression of the decimal 14. First, llogaz| =
3 is represented in unary as 111. Next, the stop bit is used. Subsequently, the
remainder of z — 21°822) = 14— 8 = 6 is stored in binary using |log, 14] =3
bits as 110. Hence, the compressed code for 14;¢ is 1110110.

Decompression requires only one pass, because it is known that for a number
with n bits prior to the stop bit, there will be n bits after the stop bit. The first
eight integers using the Elias y encoding are given in Table 5.5:

190 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 5.6. Gamma Compression

Value | Compressed Bit String

110

21100

4| 11000

63 | 111110 11111

180 | 111111100110100

5.1.3.1 Example: Variable Length Compression

For our same example, the differences of 1, 2, 4, 63, and 180 are given in
Table 5.6. This requires only 35 bits, thirteen less than the simple BA com-
pression. Also, our example contained an even distribution of relatively large
offsets to small ones. The real gain can be seen in that very small offsets re-
quire only a 1 or a 0. Moffat and Zobel use the v code to compress the term
frequency in a posting list, but use a more complex coding scheme for the
posting list entries.

5.1.4 Varying Compression Based on Posting List Size

The gamma scheme can be generalized as a coding paradigm based on the
vector V with positive integers ¢ where > v; > N. To code integer z > 1
relative to V, find k such that:

k-1 k
ZUJ <z < Zvj
j=1 J=1

In other words, find the first component of V such that the sum of all preceding
components is greater than or equal to the value, z, to be encoded. For our
example of 7, using a vector V of <1, 2, 4, 8, 16, 32> we find the first three
components that are needed (1, 2, 4) to equal or exceed 7, so k is equal to
three. Now k can be encoded in some rcpresentation (unary is typically used)
followed by the difference:

k-1
d=LIJ—ZUj‘1
Jj=1

Using this sum we have: d = 7 — (1 + 2) — 1 = 3 which is now coded in
[log, vx] = [logy 4] = 2 binary bits. With this generalization, the v scheme

Efficiency 191

Table 5.7. Variable Compression based on Posting List Size

Value | Compressed Bit String
1 000
2 001
4 011
63 11110 000010
180 1111100110111
can be seen as using the vector V composed of powers of 2 <1,2,4,8,...,>

and coding k in binary.

Clearly, V can be changed to give different compression characteristics.
Low values in v optimize compression for low numbers, while higher val-
ues in v provide more resilience for high numbers. A clever solution given
by [Zobel et al., 1992] was to vary V for each posting list such that V =
< b,2b, 4b, 8b, 16b,32b,64b, ..., > where b is the median offset given in the
posting list.

5.1.4.1 Example: Using the Posting List Size

Using our example of 1, 2, 4, 63, 180, the median, b, has four results in the
vector V = < 4, 8, 16, 32, 64, 128, 256>. Table 5.7 contains an example for
the five posting lists using this scheme.

This requires thirty-three bits as well and we can see that, for this example,
the use of the median was not such a good choice as there was wide skew in the
numbers. A more typical posting list in which numbers were uniformly closer
to the median could result in better compression.

5.1.4.2 Throughput-optimized Compression

Anh and Moffat developed an index compression scheme that yields good
compression ratios while maintaining fast decompression time for efficient
query processing [Anh and Moffat, 2004]. They developed a variable-length
encoding that takes advantage of the distribution of the document identifier
offsets for each posting list. This is a hybrid of bit-aligned and byte-aligned
compression; each 32-bit word contains encodings for a variable number of
integers, but each integer within the word is encoded using an equal number
of bits. Words are divided into bits used for a “selector” field and bits used for
storing data.

The selector field contains an index into a table of inter-word partitioning
strategies based on the number of bits available for storing data, ensuring that

192 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

each integer encoded in the word uses the same number of bits. The appropriate
partitioning strategy is chosen based on the largest document identifier offset in
the posting list. Anh and Moffat propose three variants based on this strategy,
differing primarily in how the bits in a word are partitioned:

= Simple-9: Uses 28 bits for data and 4 bits for the selector field; the selection
table has nine rows, as there are nine different ways to split 28 bits equally.

= Relative-10: Similar to Simple-9, but uses only two bits for the selector
field, leaving 30 data bits with 10 partitions. The key difference is that, with
only 2 selector bits, each word can only chose from 4 of the 10 available
partitions — these are chosen relative to the selector value of the previous
word. This algorithm obtains slight improvements over Simple-9.

» Carryover-12: This is a variant of Relative-10 where some of the wasted
space due to partitioning is reclaimed by using the leftover bits to store the
selector value for the next word, allowing that word to use all of its bits for
data storage. This obtains the best compression of the three, but it is the
most complex, requiring more decompression time.

5.1.4.3 Example: Simple-9

To continue our example using the differences of 1, 2, 4, 63, and 180, we
show the selection table in Table 5.8. To find the appropriate coding scheme,
we examine each row in the table. We cannot use row a because there is a
value in the first 28 offsets greater than 2. We can not use row b because there
is a value in the first 14 offsets greater than 22. Continuing down the list, we
find that we also can not use row e because there is a value in the first five
offsets greater than 2°. We must use row f, since the highest value in the first
four offsets (63) is less than 27 = 128. This yields four 7-bit codes for the first
four offsets (see Table 5.9), along with row f encoded in four bits (e.g., 0101).

The final offset in our example, 180, will not fit within the first 32-bit word,
therefore, a second 32-bit word is needed to encode it. Thus, 64 total bits are
required to compress our example using Simple-9. This example illustrates
that these compression schemes are most effective with longer posting lists.
Additionally, it should be clear that these schemes allow for very fast decom-
pression time, as each value is encoded at a fixed length within each word.

5.1.4.4 Block-addressing compressed indexes

Another method of reducing index size is to build an index that addresses
blocks of text with fixed sizes which may contain more than one document.
Specific term counts can then be obtained by linearly scanning these blocks.

Efficiency 193

Table 5.8. Nine Different Ways of Partitioning 28 Data Bits (for Simple-9)

Selector | Codes | Length (bits) | Number of Unused bits
a 28 1 0
b 14 2 0
c 9 3 1
d 7 4 0
e 5 5 3
f 4 7 0
g 3 9 1
h 2 14 0
i 1 28 0

Table 5.9. Example of Simple-9 Compression

Value | Compressed Bit String
1 | 0000000
2 [0000001
4 [0000011
63 | 0111110

This allows for an adjustable balance between the time to create the index
and the storage used for the index and query processing speed [Navarro et al.,
2000].

5.1.5 Index Pruning

To this point, we have discussed lossless approaches for inverted index com-
pression. A lossy approach is called static index pruning. The basic idea was
described in [Carmel et al., 2001]. Essentially, posting list entries may be re-
moved or pruned without significantly degrading precision. Experiments were
done with both term specific pruning and uniform pruning. With term specific
pruning, different levels of pruning are done for each term. Static pruning sim-
ply eliminates posting list entries in a uniform fashion - regardless of the term.
It was shown that pruning at levels of nearly seventy percent of the full inverted
index did not significantly affect average precision. A hardware implementa-
tion of this basic approach is described in [Agun and Frieder, 2003].

194 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

5.1.6 Reordering Documents Prior to Indexing

Index compression efficiency can also be improved if we use an algorithm
to reorder documents prior to compressing the inverted index [Blandford and
Blelloch, 2002, Silvestri et al., 2004]. Since the compression effectiveness of
many encoding schemes is largely dependent upon the gap between document
identifiers, the idea is that if we can feed documents to the algorithm correctly,
we could reduce the average gap, thereby maximizing compression. Consider
documents d;, dgg, and djggg, all which contain the same term ¢. For these
documents we obtain a posting list entry for t of t — dy, ds1, d101-

The document gap between each posting list entry is 50. If however, we
arranged the documents prior to submitting them to the index, we could submit
these documents as di, do, and d3 which completely eliminates this gap. We
note that for D documents there are 2° possible orderings, so any attempt to
order documents will be faced with significant scalability concerns.

The algorithms compare documents to other documents prior to submitting
them for indexing. The idea is that similar documents will contain similar
terms and document gaps are reduced if we order documents based on their
similarity to one another. Each algorithm uses the Jaccard similarity coefficient
(see Section 2.1.2) to obtain a measure of document similarity. Two basic
approaches have been proposed: top-down (starting from the collection as a
whole) or bottom-up (starting from each individual document).

5.1.6.1 Top-Down

Generally, the two top-down algorithms consist of four main phases. In the
first phase, called center selection, two groups of documents are selected from
the collection and used as partitions in subsequent phases. In the redistribution
phase, all remaining documents are divided among the selected centers accord-
ing to their similarity. In the recursion phase, the previous phases are repeated
recursively over the two resulting partitions until each one becomes a single-
ton. Finally, in the merging phase, the partitions formed from each recursive
call are merged bottom-up, creating an ordering.

The first of the two proposed top-down algorithms is called transactional
B & B, as it is an implementation of the Blelloch and Blandford algorithm
described in [Blandford and Blelloch, 2002]. This reordering algorithm obtains
the best compression ratios of the four, however it is not scalable.

The second top-down algorithm is called Bisecting, so named because its
center selection phase consists of choosing two random documents as centers,
thereby dramatically reducing the cost of this phase. Since its center selection
is so simple, the Bisecting algorithm obtains less effective compression but it
is more efficient.

Efficiency 195

51.6.2 Bottom-Up

The bottom-up algorithms begin by considering each document in the col-
lection separately and they progressively group documents based on their sim-
ilarity. The first bottom-up algorithms is inspired by the popular k-means
approach to document clustering (see Section 3.2.3.3). The second uses k-
scan; an algorithm that is a simplified version of k-means which is based on a
centroid-search algorithm.

The k-means algorithm initially chooses k documents as cluster representa-
tives, and assigns all remaining documents to those clusters based on a measure
of similarity. At the end of the first pass, the cluster centroids are recomputed
and the documents are reassigned according to their similarity to the new cen-
troids. This iteration continues until the cluster centroids stabilize. The single-
pass version of this algorithm only performs the first pass of this algorithm, and
the authors select the k initial centers using the Buckshot clustering technique
(see Section 3.2.3.4).

The k-scan algorithm is a simplified version of single-pass k-means, requir-
ing only k steps to complete. It forms clusters in place at each step, by first
selecting a document to serve as the centroid for a cluster, and then assigning a
portion of unassigned documents that have the highest similarity to that cluster.

5.2 Query Processing

Recent work has focused on improving query run-time. Moffat and Zobel
have shown that query performance can be improved by modifying the inverted
index to support fast scanning of a posting list [Moffat and Zobel, 1996, Mof-
fat and Zobel, 1994]. Other work has shown that reasonable precision and
recall can be obtained by retrieving fewer terms in the query [Grossman et al.,
1997]. Computation can be reduced even further by eliminating some of the
complexity found in the vector space model [Lee and Ren, 1996].

5.2.1 Inverted Index Modifications

Moffat and Zobel show how an inverted index can be segmented to allow for
a quick search of a posting list to locate a particular document [Witten et al.,
1999]. The typical ranking algorithm scans the entire posting list for each term
in the query. An array of document scores is updated for each entry in the
posting list. Moffat and Zobel suggest that the least frequent terms should be
processed first.

The premise is that less frequent terms carry the most meaning and proba-
bly have the most significant contribution to a high-ranking documents. The
entire posting lists for these terms are processed. Some algorithms suggest that
processing should stop after d documents are assigned a non-zero score. The
premise is that at this point, the high-frequency terms in the query will sim-

196 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

ply be generating scores for documents that will not end up in the final top ¢
documents, where ¢ is the number of documents that are displayed to the user.

A suggested improvement is to continue processing all the terms in the
query, but only update the weights found in the d documents. In other words,
after some threshold of d scores has been reached, the remaining query terms
become part of an AND (they only increment documents who contain another
term in the query) instead of the usual vector space OR. At this point, it is
cheaper to reverse the order of the nested loop that is used to increment scores.
Prior to reaching d scores, the basic algorithm is:

For each term ¢ in the query Q
Obtain the posting list entries for ¢
For each posting list entry that indicates ¢ is in doc 7
Update score for document :

For query terms with small posting lists, the inner loop is small; however,
when terms that are very frequent are examined, extremely long posting lists
are prevalent. Also, after d documents are accessed, there is no need to update
the score for every document, it is only necessary to update the score for those
documents that have a non-zero score.

To avoid scanning very long posting lists, the algorithm is modified to be:

For each term ¢ in the query Q
Obtain posting list, p, for documents that contain ¢
For each document z in the reversed list of d documents
Scan posting list p for x
if = exists
update score for document z

The key here is that the inverted index must be changed to allow quick ac-
cess to a posting list entry. It is assumed that the entries in the posting list are
sorted by a document identifier. As a new document is encountered, its en-
try can be appended to the existing posting list. Moffat and Zobel propose to
change the posting list by partitioning it and adding pointers to each partition.
The posting list can quickly be scanned by checking the first partition pointer
(which contains the document identifier of the highest document in the parti-
tion and a pointer to the next partition). This check indicates whether or not a
Jump should be made to the next partition or if the current partition should be
scanned. The process continues until the partition is found, and the document
we are looking for is matched against the elements of the partition. A small
size, d, of about 1,000 resulted in the best CPU time for a set of TREC queries
against the TREC data [Moffat and Zobel, 1996].

Efficiency) 197

5.2.2 Partial Result Set Retrieval

Another way to improve run-time performance is to stop processing after
some threshold of computational resources is expended. One approach counts
disk I/O operations and stops after a threshold of disk I/O operations is reached
[Yee et al., 1993]. The key to this approach is to sort the terms in the query
based on some indicator of term goodness and process the terms in this or-
der. By doing this, query processing stops after the important terms have been
processed. Sorting the terms is analogous to sorting their posting lists. Three
measures used to characterize a posting list are now described.

5.2.2.1 Cutoff Based on Document Frequency

The simplest measure of term quality is to rely on document frequency. This
was described in [Grossman et al., 1997, Grossman et al., 1994] which showed
that using between twenty-five to seventy-five percent of the query terms af-
ter they were sorted by document frequency resulted in almost no degradation
in precision and recall for the TREC-4 document collection. In some cases,
precision and recall improves with fewer terms because lower ranked terms
are sometimes noise terms such as good, nice, useful, etc. These terms have
long posting lists that result in scoring thousands of documents and do little to
improve the quality of the result. Using term frequency is a means of imple-
menting a dynamic stop word list in which high-frequency terms are eliminated
without using a static set of stop words.

5.2.2.2 Cutoff Based on Maximum Estimated Weight

Two other measures of sorting the query terms are described in [Yee et al.,
1993]. The first computes the maximum term frequency of a given query term
as t fmae and uses the following as a means of sorting the query.

t fmaz X tdf

The idea is that a term that appears frequently in all the documents in which it
appears, is probably of more importance than a term that appears infrequently
in the documents that it appears in. The assumption is that the maximum value
is a good indicator of how often the term appears in a document.

5.2.2.3 Cutoff Based on the Weight of a Disk Page in the Posting List

The cutoffs based on term weights can be used to characterize posting lists
and choose which posting list to process first. The problem is that a posting list
can be quite long and might have substantial skew. To avoid this problem, a
new measure sorts disk pages within a posting list instead of the entire posting
list. At index creation time, the posting lists are sorted in decreasing order by

198 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

term frequency and instead of just a pointer that points to the first entry in the
posting list, the index contains an entry for each page of the posting list. The
entry indicates the maximum term frequency on a given page. The posting list
pages are then sorted by:

tfmaz X idf x f(I)

where f(I) is a function that indicates the number of entries on a page. This is
necessary since some pages will not be full and a normalization is needed such
that they are not sorted in exactly the same way as a full page. One value that
is used for f(I)is i® where 0 < e < 1.

Unfortunately, this measure requires an entry in the index for each page
in the posting list. However, results show (for a variety of query sizes) that
only about forty percent of the disk pages need to be retrieved to obtain eighty
percent of the documents that would be found if all one hundred percent of the
pages were accessed. All of these tests were performed using small document
collections.

5.2.3 Vector Space Simplifications

Recent work has shown, in many cases, that simplifications to the vector
space model can be made with only limited degradation in precision and recall
[Lee et al., 1997]. In this work, five variations to the basic cosine measure (see
Section 2.1) were tested on five small collections and 10,000 articles from the
Wall Street Journal portion of the TREC collection. To review, the baseline
cosine coefficient is:

t
chl wejdij
t t
\/Zj:l(dij)2 Zj:l(w(lj)2
The first variation was to replace the document length normalization that is
based on weight with the square root of the number of terms in D;. The second

variation was to simply remove the document length normalization (simple dot
product coefficient) given by:

SC(Q1 Dl) =

t
C(Q.Di) =Y wg;dy;
=1

The third measure drops the idf. This eliminates one entry in the index for
each term.

t
C(Q,Di) =Y tfotfy;

Jj=1

Efficiency 199

The fourth measure drops the ¢ f but retains the idf. This eliminates the need
to store the ¢ f in each entry of the posting list. This significantly reduces both
computational, storage, and I/O costs.

t
SC(Q,Di) =) wejwy;

i=1

The weight, wyg;, is one if term j is in the query and zero if otherwise. The
weight, w;; is equal to idf; if term j is in the document and zero otherwise.

The fifth and final method simply counts matches between the query and the
terms. That is:

t
SC(Q, Di) =) wejwy;

=1

where wg; is one if term j is in the query and zero otherwise, and w;; is equal
to one if term 7 is in the document and zero otherwise.

For the TREC subset, two tests were done. The first was with the TREC
narratives (long queries) and the second was with the TREC concepts (short
queries). With the narratives, the baseline cosine measure performed the best
with the square root document length normalization doing slightly better. The
concept queries had the interesting result that the fourth and fifth (no idf and
simple match counting) methods had a higher precision than the baseline. The
only explanation for this somewhat surprising result is that the concept queries
are very specific in nature so the effect of additional weights did not have much
impact.

5.3 Signature Files

The use of signature files lies between a sequential scan of the original text
and the construction of an inverted index. A signature is an encoding of a
document. The idea is to encode all documents as relatively small signatures
(often the goal is to represent a signature in only a few bits). Once this is
done, the signatures can be scanned instead of the entire documents. Typically,
signatures do not uniquely represent a document (i.e., a signature represents
multiple documents), so it is usually necessary to implement a retrieval in two
phases. The first phase scans all of the signatures and identifies possible hits,
and the second phase scans the original text of the documents in the possible hit
list to ensure that they are correct matches. Hence, signature files are combined
with pattern matching. Figure ?? illustrates the mapping of documents onto the
signatures.

Construction of a signature is often done with different hashing functions.
One or more hashing functions are applied to each word in the document. Of-

200 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Original
Documents Signatures

]

Small enough
for sequential
scan

AL S

Table 5.10. Building a Signature

term | h(term)
t1 0101
t2 1010
t3 0011

ten, the hashing function is used to set a bit in the signature. For example,
if the terms information and retrieval were in a document and h(information)
and h(retrieval) corresponded to bits one and four respectively, a four bit binary
signature for this document would appear as 1001.

A false match occurs when a word that is not in the list of w signatures has
the same bitmap as one of these signatures. For example, consider a term t;
that sets bits one and three in the signature and another term to that sets bits
two and four in the signature. A third term ¢3 might correspond to bits one
and two and thereby be deemed a match with the signature, even though it is
not equal to ¢; or t5. Table 5.10 gives the three terms just discussed and their
corresponding hash values.

Consider document d; that contains ¢;, document ds contains ¢; and ¢3 and
document d3 contains t; and t;. Table 5.11 has the signatures for these three
documents.

Efficiency 201

Table 5.11. Document Signatures

Document | Signature
di 0101
d2 0111
ds 1111

Hence, a query that is searching for term t3 will obtain a false match on docu-
ment d3 even though it does not contain 3.

By lengthening the signature to 1,024 bits and keeping the number of words
stored in a signature small, the chance of a false match can be shown to be less
than three percent [Stanfill and Thau, 1991].

To implement document retrieval, a signature is constructed for the query.
A Boolean AND is executed between the query signature and each document
signature. If the AND returns TRUE, the document is added to the possible hit
list. Similarly, a Boolean OR can be executed if it is only necessary for any
word in the query to be in the document. To minimize false positives, multiple
hashing functions are applied to the same word [Stanfill and Kahle, 1986].

A Boolean signature cannot store proximity information or information about
the weight of a term as it appears in a document. Most measures of relevance
determine that a document that contains a query term multiple times will be
ranked higher than a document that contains the same term only once. With
Boolean signatures, it is not possible to represent the number of times a term
appears in a document; therefore, these measures of relevance cannot be im-
plemented.

Signatures are useful if they can fit into memory. Also, it is-easier to add
or delete documents in a signature file than to an inverted index, and the order
of an entry in the signature file does not matter. This somewhat orderless pro-
cessing is amenable to parallel processing (see Section 7.1.2). However, there
is always a need to check for false matches, and the basic definition does not
support ranked queries. A modification to allow support for document ranking
is to partition a signature into groups where each term frequency is associated
with a group [Lee and Ren, 1996].

53.1 Scanning to Remove False Positives

Once a signature has found a match, scanriing algorithms are employed to
verify whether or not the match is a false positive due to collisions. We do
not cover these in detail as a lengthy survey surrounding the implementation
of many text scanning algorithms is given in [Lecrog, 1994]. Signature al-

202 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

gorithms can be employed without scanning for false drops (if a long enough
signature is used) and no significant degradation in precision and recall oc-
curs [Lee and Ren, 1996]. However, for completeness, we do provide a brief
summary of text scanning algorithms.

Pattern matching algorithms are related to the use of scanning in informa-
tion retrieval since they strive to find a pattern in a string of text characters.
Typically, pattern matching is defined as finding all positions in the input text
that contain the start of a given pattern. If the pattern is of size p and the text is
of size s, the naive nested loop pattern match requires O(ps) comparisons.

Aho and Corasick’s algorithms implement deterministic finite state automata
to identify matches in the text [Aho and Corasick, 1975]. Knuth, Morris, and
Pratt (KMP) also describe an algorithm that runs in O(s) time that scans for-
ward along the text, but uses preprocessing of the pattern to determine appro-
priate skips in the string that can be safely taken [Knuth et al., 1977].

The Boyer-Moore algorithm is another approach that preprocesses the pat-
tern, but starts at the last character of the pattern and works backwards towards
the beginning of the string. Two preprocessed functions of the pattern are de-
veloped to skip parts of the pattern when repetition in the pattern occurs and to
skip text that simply cannot match the pattern. These functions use knowledge
gleaned from the present search point [Boyer and Moore, 1977]. The algo-
rithm was improved to run in linear time even when multiple occurrences of
the pattern are present [Galil, 1979].

Later, in the 1980’s, a pattern matching algorithm that works by applying
a hash function to the pattern and the next p characters in the text was given
in [Karp and Rabin, 1987]. If a match in the hash function occurs (ie., a
collision between h(pattern) and h(text)), the contents of the pattern and text
are examined. The goal is to reduce false collisions. By using large prime
numbers, collisions occur extremely rarely, if at all. Another pattern matching
algorithm is presented in [Frakes and Baeza-Yates, 1993]. This algorithm uses
a set of bit strings which represent Boolean states that are constantly updated
as the pattern is streamed through the text.

The best of these algorithms runs in a linear time as where « is some con-
stant 0 < o < 1.0 and s is the size of the string. The goal is to lower the
constant. In the worst case, s comparisons must be done, but the average case
for these algorithms is often sublinear. An effort is made in these algorithms
to avoid having to look backward in the text. The scan continues to move for-
ward with each comparison to facilitate a physically contiguous scan of a disk.
The KMP algorithm builds a finite state automata for many patterns so it is
directly applicable. An algorithm by Uratani and Takeda combines the FSA
approach by Aho and Corasick with the Boyer-Moore idea of avoiding much
of the search space. Essentially, the FSA is built by using some of the search

Efficiency 203

space reductions given by Boyer-Moore. The FSA scans text from right to left,
as done in Boyer-Moore. Note this is done for a query that contains multiple
terms [Uratani and Takeda, 1993]. In a direct comparison with repeated use
of the Boyer-Moore algorithm, the Uratani and Takeda algorithm is shown to
execute ten times fewer probes for a query of 100 patterns. For only two pat-
terns, the average probe ratio (the ratio of the number of references in the text
and the length of the text) of Boyer-Moore is 0.236 while Uratani-Takeda is
0.178.

5.4 Duplicate Document Detection

A method to improve both efficiency and effectiveness of an information
retrieval system is to remove duplicates or near duplicates. Duplicates can
be removed either at the time documents are added to an inverted index or
upon retrieving the results of a query. The difficulty is that we do not simply
wish to remove exact duplicates, we may well be interested in removing near
duplicates as well. However, we do not wish our threshold for nearness to be so
broad that documents are deemed duplicate when, in fact, they are sufficiently
different that the user would have preferred to see each of them as individual
documents.

For Web search, the duplicate document problem is particularly acute. A
search for the term apache might yield numerous copies of Web pages about
the Web server product and numerous duplicates about the Indian tribe. The
user should only be shown two hyperlinks, but instead is shown thousands.
Additionally, these redundant pages can affect term and document weighting
schemes. Additionally, they can increase indexing time and reduce search ef-
ficiency [Chowdhury et al., 2002, Cho et al., 1999].

5.4.1 Finding Exact Duplicates

Duplicate detection is often implemented by calculating a unique hash value
for each document. Each document is then examined for duplication by look-
ing up the value (hash) in either an in-memory hash or persistent lookup sys-
tem. Several common hash functions used are MD2, MD5, or SHA [SHAL,
1995]. These functions are used because they have three desirable properties,
namely: they can be calculated on arbitrary document lengths, they are easy to
compute, and they have very low probabilities of collisions.

While this approach is both fast and easy to implement, the problem is that
it will find only exact duplicates. The slightest change (e.g.; one extra white
space) results in two similar documents being deemed unique. For example,
a Web page that displays the number of visitors along with the content of the
page will continually produce different signatures even though the document is

204 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

the same. The only difference is the counter, and it will be enough to generate
a different hash value for each document.

5.4.2 Finding Similar Duplicates

While it is not possible to define precisely at which point a document is no
longer a duplicate of another, researchers have examined several metrics for
determining the similarity of a document to another. The first is resemblance
[Broder et al., 1997]. This work suggests that if a document contains roughly
the same semantic content, it is a duplicate whether or not it is a precise syn-
tactic match.

|S(D:) N S(D;)|

r(Ds, D;) = |S(D;) U S(Dj)]

3.1)

The resemblance r of document D; and document D;, as defined in Equa-
tion 5.1, is the intersection of features over the union of features from two doc-
uments. This metric can be used to calculate a fuzzy similarity between two
documents. For example, assume D; and D; share fifty percent of their terms
and each document has 10 terms. Their resemblance would be -153 = 0.33.
Many researchers have explored using resemblance to provide a threshold ¢ to
find duplicate documents [Brin et al., 1995, Garcia-Molina et al., 1996, Shiv-
akumar and Garcia-Molina, 1996, Broder et al., 1997, Shivakumar and Garcia-
Molina, 1998, Fetterly et al., 2003] where if ¢t was exceeded the documents
would be considered duplicate.

Two general issues were explored when using resemblance. The first is what
features and threshold t should be used. The second is efficiency issues that
come into play with large collections and the optimizations that can be applied
[Broder, 1998]. The cosine measure (see Section 2.1.2) is commonly used to
identify the similarity between two documents.

For duplicate detection a binary feature representation produces a similarity
of two documents similar to term-based resemblance. Thus, as the distance
of two documents approaches 1.0, they become more similar in relation to the
features being compared.

5.4.2.1 Shingles

The first near-duplicate algorithm we discuss is the use of shingles. A shin-
gle is simply a set of contiguous terms in a document. Shingling techniques,
such as COPS [Brin et al., 1995], KOALA [Heintze, 1996], and DSC [Broder,
1998], essentially all compare the number of matching shingles.

The comparison of document subsets allows the algorithms to calculate a
percentage of overlap between two documents using resemblance as given in
Equation 5.1. This relies on hash values for each document subsection/feature

Efficiency 205

set and filters those hash values to reduce the number of comparisons the algo-
rithm must perform. This filtration of features, therefore, improves the runtime
performance. Note that the simplest filter is strictly a syntactic filter based
on simple syntactic rules, and the trivial subset is the entire collection. In
the shingling approaches, rather than comparing documents, subdocuments
are compared, and thus, each document can produce many potential dupli-
cates. Returning many potential matches requires vast user involvement to
sort out potential duplicates, diluting the potential usefulness of these types
of approaches. To combat the inherent efficiency issues, several optimization
techniques were proposed to reduce the number of comparisons made.

The DSC algorithm reduces the number of shingles used. Frequently occur-
ring shingles are removed in [Heintze, 1996]. Every 25" shingle is saved in
[Broder et al., 1997]. This reduction, however, hinders effectiveness. Worse
still, even when relatively infrequent shingles are removed (only those that
occur in over 1000 documents) and keeping only every 25" shingle, the im-
plementation of the DSC algorithm took 10 CPU days to process 30 million
documents [Broder, 1998].

The DSC algorithm has a more efficient alternative, DSC-SS, which uses
super shingles. This algorithm takes several shingles and combines them into
a super shingle. The result is a document with a few super shingles instead of
many shingles. Resemblance is defined as matching a single super shingle in
two documents. This is much more efficient because it no longer requires a full
counting of all overlaps. The authors, however, noted that DSC-SS does “not
work well for short documents” so no runtime results were reported [Broder,
1998]. This makes sense because super shingles tend to be somewhat large and
will, in all likelihood, completely encompass a short document.

5.4.22 Duplicate Detection via Similarity

Another approach is to simply compute the similarity coefficient between
two documents. If the document similarity exceeds a threshold, the docu-
ments can be deemed duplicates of each other [Sanderson, 1997, Buckley
et al., 2000, Hoad and Zobel, 2002]. These approaches are similar to work
done in document clustering (see Section 3.2). Unfortunately, they require all
pairs of documents to be compared, i.e., each document is compared to every
other document and a similarity weight is calculated. A document to document
similarity comparison approach is thus computationally prohibitive given the
theoretical O(d?) runtime, where d is the number of documents. In reality,
these approaches only evaluate documents with an overlap of terms. Thus, the
actual runtime is data dependent and difficult to accurately predict.

206 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

5.4.2.3 Treating the Document as a Query

Another approach treats each result document as a new query and looks for
other documents that match this document. This approach is not computation-
ally feasible for large collections or dynamic collections since each document
must be queried against the entire collection. Sanderson and Cooper used a
variation on this where the terms are selected using Rocchio relevance feed-
back (see Section 3.1.1 [Sanderson, 1997, Cooper et al., 2002]). For large
collections, where a common term can occur in millions of documents, this is
not scalable. For term selection approaches this cost is significantly less, but
still requires at least the same number of /O operations as the number of terms
selected via the relevance feedback algorithm. Kolcz et. al. proposed an op-
timization to the more typical cosine similarity measure. In this work, it was
assumed that terms that occurred in more than five percent of the collection ac-
tually occurred in each document. This optimization produced results within
ninety percent of the full cosine similarity measure, but executed an order of
magnitude faster [Kolcz et al., 2004].

5424 I-Match

I-Match uses a hashing scheme that uses only some terms in a document.
The decision of which terms to use is key to the success of the algorithm. I-
Match is a hash of the document that uses collection statistics, for example,
idf, to identify which terms should be used as the basis for comparison. The
use of collection statistics allows one to determine the usefulness of terms for
duplicate document detection. Previously, it was shown that terms with high
collection frequencies often do not add to the semantic content of the docu-
ment [Grossman et al., 1995, Smeaton et al., 1997]. I-Match assumes that that
removal of very infrequent terms or very common terms results in good docu-
ment representations for identifying duplicates. Pseudo-code for the algorithm
is as follows.

» Get document

» Parse document into a token steam, removing format tags.

= Using term thresholds (idf), retain only significant tokens.

= Insert relevant tokens into unicode ascending ordered tree of unique tokens.

= Loop through token tree adding each unique token to the SHA1 [4] digest.
Upon completion of loop, a (doc_id, SHA1 digest) tuple is defined.

s The tuple (doc.id, SHA1 digest) is inserted into the storage data structure
using the key.

s If there is a collision of digest values then the documents are similar.

Efficiency 207

The overall runtime of the I-Match approach is (O(dlogd)) in the worst
case where all documents are duplicates of each other and (O(d)) otherwise,
where d is the number of documents in the collection. All similar documents
must be grouped together. That is, the corresponding document identifiers
must be stored as a group. In the most extreme case, all of the hash values
are the same (all the documents are similar to each other). In such a case, to
store all the document identifiers together in a data structure (tree) requires
(O(dlog d)) time. Typically, however, the processing time of the I-Match ap-
proach is O(d) time. The calculation of idf values can be approached with
either of two methods. The first is with the use of a training collection to pro-
duce a set of terms idf tuples before the de-duplication work occurs. It was
shown that term idf weights change slightly as collection sizes grow so this is
an acceptable solution [Frieder et al., 2000a].

A second approach is to run two passes over the documents, where the first
pass calculates the idf weights of the terms, and the second pass finds du-
plicates with the I-Match algorithm. This approach increases the actual run
time of the algorithm, but the theoretical complexity would remain unchanged.
Conrad et. al. examined these approaches when using a dynamic collection and
only using high idf terms and found the approach not stable if a dynamic vo-
cabulary is used [Conrad et al., 2003]. Recently, they developed a new test col-
lection for inexact duplicate document detection [Conrad and Schriber, 2004].
This suggests that the first approach may be the more applicable for this prob-
lem.

The I-Match time complexity is comparable to the DSC-SS algorithm, which
generates a single super shingle if the super shingle size is large enough to en-
compass the whole document. Otherwise, it generates k super shingles while
I-Match only generates one. Since k is a constant in the DSC-SS analysis, the
two algorithms are equivalent.

I-Match, is more efficient in practice. However, the real benefit of I-Match
over DSC-SS is that small documents are not ignored. With DSC-SS, it is
quite likely that for sufficiently small documents, no shingles are identified for
duplicate detection. Hence, those short documents are not considered even
though they may be duplicated. While I-Match is efficient it suffers from the
same brittleness that the original hashing techniques suffered from, when some
slight variation in that hash is made. One recent enhancement to I-Match has
been the use of random lexicon variations of the feature idf range. These vari-
ations are then used to produce multiple signatures of a document. All of the
hashes can be considered a valid signature, this modification to I-Match re-
duces the brittleness of I-Match. Kolcz et. al. showed that this randomization
approach improved the recall effectiveness of I-Match by 40-60 percent with-
out hurting precision, when using 10 random lexicons [Kolcz et al., 2004].

208 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

5.5 Summary

Performance evaluation considerations of information retrieval systems in-
volve both effectiveness (accuracy) and efficiency (run-time and storage over-
head) measures. In this chapter, we focused on the efficiency considerations.

Initially, we described the concept of and motivation for the use of an in-
verted index. An inverted index is a many-to-many mapping of terms onto
documents. Using an inverted index, only documents that contain the specified
query terms are accessed, thus significantly reducing the I/O requirements as
compared to other search processing structures. Having described the concept
of an inverted index, we continued by illustrating a method to implement an
inverted index and a pruned variation. We also outlined various techniques for
compressing the index. Two compression techniques were reviewed. The first,
fixed length compression, has the advantage of simplicity and slightly more
efficient query processing times as compared to the second, variable length
compression. Variable length compression, however, does result in a slightly
better compression ratio.

We concluded the chapter with an overview of signature files. Signature
files contain a set of document signatures, one signature per document. A doc-
ument signature is an encoding of each document. Key terms contained in the
document are hashed onto a vector; the existence of a term j in the document ¢
is denoted by a one in the 72 bit of document signature i. To determine which
documents are relevant to a particular query, only the signature file must be
examined. Since term hashing can result in false positive indications, a two
pass search strategy is necessary. In the first pass, involving the examination
of the signature file, all potential candidates are determined. In the second
phase, a full text scan of the potential candidates determined in the first pass is
performed.

Although greater attention has traditionally been placed on the effectiveness
of information retrieval systems, efficiency issues are critical. Failure to op-
timize the efficiency of an information retrieval system can result in a highly
accurate system that suffers prohibitive execution or storage performance. As
storage technology continues to improve and decrease in cost, storage con-
straints are becoming less critical. However, with the continued exponential
growth of online data, storage constraints are still a concern and run-time
performance considerations are of paramount importance. Parallel process-
ing techniques used to improve the overall run-time performance are described
in Chapter 7.

Efficiency 209

5.6 Exercises

I Write a utility called index that builds an inverted index of Alice in Won-
derland. Assume ten lines of input is a separate document. Assume you
have enough memory to store all of the posting lists in memory while you
are building the inverted index. Identify how much space your index re-
quires and how long it takes to build it. Store the idf for each term in the
index. Each posting list entry should contain the term frequency in the doc-
ument. Use the 100 most frequent terms as stop terms. Test your index
by computing a vector space #f-idf similarity measure for the following five
queries.

rabbit watch

m Jooking glass
m tea party
m cheshire cat

8 queen of hearts

2 Now modify the code you just wrote to use an inverted index compression
technique. Pick one in this chapter. Measure query performance for the
same five queries, storage overhead, and the time to build the index. Repeat
this, an now use a pruned index.

3 Pick a query that contains ten terms. Execute it and retrieve the top doc-
uments choosing ten that are relevant. Now, sort the query terms by their
term frequency across the collection. Re-execute the query with one term—
the least frequently occurring term in the collection. Identify the number of
relevant documents found with just this term. Repeat this process, adding
a single term to the query each time. Are all ten terms needed to find the
relevant documents you found with the original query? Talk about what
you have learned with this exercise and how this technique could be used
to improve run-time without a corresponding loss in accuracy.

4 Develop a signature-based index where you build a signature for each “doc-
ument” in the book. Use a 24-bit signature for each document. Now im-
plement the ten queries used in the previous exercises as a simple Boolean
OR. Compare run-time performance of the use of signatures to the inverted
index. Describe the loss in functionality inherent in the use of signatures.
Identify a heuristic in which signatures could be used as a “first-pass filter”
for a very large collection and then describe how an inverted index could
be used for detailed analysis.

Chapter 6

INTEGRATING STRUCTURED DATA AND TEXT

Essential problems associated with searching and retrieving relevant docu-
ments were discussed in the preceding chapters. However, simply searching
massive quantities of unstructured data is not sufficient.

Terabytes of structured data currently exist. NCR recently demonstrated
the use of its database system on a 300 terabyte database [Holmes, 2004]. It
is reasonable to expect databases to soon grow into the petabyte range. The
study of database management systems (DBMS) focuses on the algorithms
necessary to support thousands of concurrent users adding, deleting, updating,
and retrieving structured data.

It is difficult to formally characterize structured data. Structured data are
data that have a certain repetitive nature—data that fit within an easily recog-
nizable datatype. Examples of structured data include name, address, phone
number, and salary. Each occurrence of a structured data item is recognizable,
sometimes 1t is possibie to list oniy a tew valia vaiues for a structured data
element (i.e., gender has only two valid values—male or female).

Airline reservation systems, automated teller machines, and credit card val-
idation devices are all systems that pervade everyday life. Each is replete with
structured data. One large production structured database has 300 terabytes
and uses 1,1016 processors [Holmes, 2004].

There is clearly a need to integrate both structured data and text. Most
production systems implemented with a relational database management sys-
tem (RDBMS) have some text—such as a comment field—which allows users
to enter a free text comment about a particular order. Commercial database
systems allow users to store these unstructured fields in Binary Large OB-
ject (BLOB) or Character Large OBjects (CLOB) datatypes unstructured data
to be stored in a relation. The problem is that these unstructured fields can-
not be accessed efficiently. Access methods such as inverted indexes found

212 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

in information retrieval systems are lacking, and when they do exist, they are
implemented in a non-standard fashion.

Similarly, information retrieval systems typically have large quantities of
structured information, (i.e., author of a document, publication date, etc.) and
usually have the ability to store data in zoned fields. These fields have a partic-
ular start and stop delimiter that identifies a zone in a document. The problem
is that these structured fields cannot be accessed efficiently. Access methods
for structured data (e.g., B-trees) and query optimization techniques that deter-
mine the best access method to the data are not usually found in information
retrieval systems.

A database management system (DBMS) and an information retrieval sys-
tem are analogous to a martial artist who is trained to fight others who are
trained in the same art. A Tai Kwon Do master is capable of defending against
other Tai Kwon Do masters. An information retrieval system is capable of ef-
ficiently handling unstructured data. A Judo master is capable of defending
against other Judo masters. A database management system is capable of ef-
ficiently handling structured data. The problem arises when the Tai Kwon Do
master faces a Judo master. This is analogous to accessing unstructured data
in a structured database system.

The approach described in the remainder of this chapter is to build some
unstructured data handling techniques on top of an existing relational database
management system. This is analogous to teaching the Judo master some Tai
Kwon Do techniques, but doing so in a way that still relies upon Judo.

It is possible to start with a database system and extend it to handle unstruc-
tured data or to start with an unstructured system and extend it to handle struc-
tured data. The approach taken in this chapter is to extend the database system.
Information retrieval is then treated as an application of the database system
(see Figure 6). The reason for this is that relational database systems, over
the years, have developed substantially more infrastructure than information
retrieval systems. Hence, to solve the integration problem, a straightforward
approach is to start with an existing database system and add the necessary
information retrieval functionality. In addition to providing integration, two
additional benefits are obtained: parallel processing and dynamic updates.
Parallel processing takes advantage of multiple processors to improve run-time
performance.

In Chapter 7, several parallel information retrieval algorithms are described.
Although these algorithms do improve performance, none of them have shown
particularly good speedup, that is, when additional processors are added they
are not fully used. However, most major database vendors (i.e., IBM, Sybase,
Oracle, Microsoft) all have parallel solutions. Some database vendors special-
ize in special-purpose parallel hardware that implements a proprietary database

Integrating Structured Data and Text 213

R

Document
Collection

Figure 6.1. IR as an Application of a RDBMS

system (the NCR Teradata). Relational, set-theoretic operators are intrinsically
unordered, and it is this lack of order that makes it easier to implement parallel
operations. Treating information retrieval as a database application is intrinsi-
cally a parallel information retrieval algorithm because the underlying DBMS
can be parallelized.

A second advantage of treating information retrieval as an application of a
relational database management system (RDBMS) is that document data can
be easily updated. Most information retrieval systems have a lengthy prepro-
cessing phase in which the inverted index is constructed. To add, modify, or
delete an existing document usually requires a process in which the inverted
index is modified. Most information retrieval systems do not support on-line
modifications to a document. A RDBMS has substantial infrastructure (con-
currency control and recovery management) to ensure that updates may be
done in real-time, and if an error occurs in the middle of an update, pieces of
the update are not partially stored in the database systems.

A key question remains: Which database model should we use and how
should the information retrieval functionality be added? Database system mod-
els include the inverted list, hierarchical, network, relational, and object-oriented
models [Date, 1994]. Most current commercial systems rely upon the rela-
tional model. Although it is interesting to contemplate whether or not another
model would be better suited for unstructured data, pragmatism dictates the
use of the relational model. Sales of RDBMS software reached $7.1 billion in

214 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

the past year. Using a different data model to obtain integration would mean
that countless sites would have to convert their existing DBMS to a new model.
The cost for this would be astronomical.

To gauge how long relational systems will dominate the market, it is useful
to look at their predecessors. IMS, a hierarchical system, and IDMS, a net-
work system, dominated the market in the 1970’s. By 1980, both were well
established. At that time, Oracle, the first relational vendor, was founded. Re-
lational systems had been advocated heavily in the research community during
the mid-1970’s with substantial work having been done with a full-fledged
prototype named System R.

IBM introduced its first commercial relational system, SQL/DS, in 1984
and its successor, DB2, in 1986. Relational systems did not gain significant
market share until the early 1990’s, a full ten years after Oracle was founded.
We first use the relational model, and we later discuss the use of more recently
developed multi-dimensional database systems.

The final question is: How should we use the relational model? Two choices
exist: extend the relational engine or treat information retrieval as an applica-
tion of an RDBMS.

Section 6.2 reviews prior attempts to extend the relational model. The main
problem with these attempts is that they are all non-standard. Portability is
lost because each relational extension is somewhat different, and users are not
able to move applications from one system to another. Other problems are that
query optimization must be modified to support any additions to the engine.
Additionally, adding new functionality to the engine makes an already complex
engine even more complex. Some additions allow users to add functions to
the engine. This makes integrity an issue as a malicious or negligent user
can intentionally or unintentionally introduce bugs into the database engine.
Finally, parallel algorithms must be developed for each addition.

By treating information retrieval as an application of a RDBMS, these prob-
lems are eliminated. The key concern is to develop efficient unchanged Struc-
tured Query Language (SQL) algorithms that adhere to the ANSI SQL-2003
standard [SQL, 2003] for each type of information retrieval functionality. This
chapter describes relational approaches for the following information retrieval
functionality:

= Boolean keyword search
= Proximity search
® Relevance ranking with terms

= Relevance feedback

Integrating Structured Data and Text 215

Relevance ranking with Spanish, phrases, passages, n-grams, and relevance
feedback have all been implemented as an application of a relational DBMS
with standard, unchanged SQL by using straightforward modifications to the
approaches described in this chapter. Details are found in [Lundquist et al.,
1997, Grossman et al., 1997].

In Section 6.1, we briefly review the relational model and SQL. A histori-
cal progression of integrating database technology with information retrieval
functionality is provided in Section 6.2. In Section 6.3, we describe the al-
gorithms used to treat the previously described information retrieval strategies
and utilities together as an application of a relational system. Only standard
SQL is used.

Next, in Section 6.4, we describe a method to support semi-structured data
search. Here, we provide a description of how a fully featured XML retrieval
engine can be built, once again, as an application of a relational database sys-
tem. Thus, as a whole, we demonstrate the integration, all via standard rela-
tional database techniques, of structured, semi-structured, and text data.

Continuing with Section 6.5, we describe the use of a multi-dimensional
data model to support the integration of hierarchically structured data and text.
Using this approach, naturally occurring hierarchies can be supported directly
by the integrating fabric.

Finally, in the section on mediators, Section 6.6, we review a method to in-
tegrate disparate data stored geographically across multiple domains that sup-
ports a question-answer paradigm. As always, a summary and our future pro-
jections conclude this chapter.

6.1 Review of the Relational Model

The relational model was initially described by Codd [Codd, 1970]. Prior
data models were navigational, in that application developers had to indicate
the meaas by which the database should be traversed. They specifically de-
scribed how to find the data. The relational model stores data in relations and
enables the developer to simply describe whar data are required, not how to ob-
tain the data. During the early 1970, relational systems were not developed
as they incur additional computational and storage overhead. Over the years,
algorithms were developed to improve query optimization. These algorithms
reduce the amount of overhead expended when using a relational system.

Over time, the benefits of the relational model have outmatched the costs,
and the relational model is now the centerpiece of most production database
systems. For some extremely high-performance applications, navigational sys-
tems are used, but relational systems have prevailed.

216 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 6.1. Employee (EMP)

empno | empname | age | salary
100 Hank 35 | $10,000
200 Fred 40 | $20,000
300 Mary 25 | $30,000
400 Sue 23 | $40,000
500 Mike 30 | $50,000

6.1.1 Relational Database, Primitives and Nomenclature

A relational database system stores data in set-theoretic relations. An at-
tribute within a relation is any symbol from a finite set £ = {Ag, A1, As, ..., AL}
A relation R on the set £ is a subset of the Cartesian product dom(Ag) x
dom(A;) x dom(Az) x ... dom(A,) where dom(4;) is the domain of A;.
R[ApA1Az2 ... A,] represents R on the set {Ag, A, Ao, ... ,An} and is re-
ferred to as the schema of R. In R[4gA4;1 A4, ... A,], each column A; is called
an artribute of R, and is denoted as R.A;.

Simply stated, each attribute contains values, preferably a singular value,
chosen from a given domain of values. An attribute color can have a domain
of red, green, black, etc. A relation is then a collection of attributes. A row,
or tuple, in the relation has a value for each attribute such that the value comes
from the domain for that attribute.

Each tuple of R is designated by < ag, ay,as, ..., a, >, where q; € dom(A;).
The value of attribute A; of tuple = € R is denoted as x[4;]. Similarly, if tuple
x € R, then x[W] is the value of the attributes of attribute set W in tuple x.

Table 6.2. Employee-Project (EMP_PROJ)

emp_no | project
100 A
100 B
100 C
200 B
300 A
300 C
400 A

Consider the relations EMP and EMP-PROJ (see Tables 6.1 and 6.2). Relation
EMP has four attributes (emp_no, emp_name, age, salary) while the EMP-
PROJ relation has two attributes (emp_no, project). The EMP relation contains
a tuple for each employee in the organization indicating the employee’s unique
identification number, name, age, and salary. An employee can also be as-

Integrating Structured Data and Text 217

signed to an arbitrary number of projects. Simply adding a project attribute
to the EMP relation would not work since it would only hold a single value.
Another solution—adding projectl, project2, project3 attributes is also inade-

_ quate because an employee may have worked on more than three projects. In
this case, there would be no place to store the 4th to nt* project.

Data models primarily differ in how they handle this type of multi-valued
relationship. This is referred to as a MANY-MANY relationship in that one
employee can be assigned to many projects while a project can be assigned to
many employees. In a navigational model, a pointer points from the EMP mas-
ter record with all single-valued occurrences to a list that contains the multi-
valued occurrences. A user who wishes to see which projects an employee is
assigned to issues a request to traverse the link from the master record to the
multi-valued list.

Additional relations are developed for the relational solution. In our case, a
single relation EMP-PROJ can be added to store the multi-valued information.
Notice that EMP-PROJ has an attribute emp_no that matches values in the EMP
relation. Hence, employee number 100 works on projects A, B, and C. The
key point is that no a priori link between EMP and EMP_PROJ exists. At
query time, a user may request that all tuples having matching values in the
two relations be obtained. In this fashion, the user has only specified what is
required not how to obtain the data.

This is important since requests for data may occur on an ad hoc basis long
after the database has been created and populated with data. The relational
model is well-suited to ad hoc requests because work is not required to redefine
relationships between the data. Additionally, data independence is intended
to reduce application development time because developers are not forced to
learn all of the intricacies of retrieving data from multi-valued relationships.
The database optimizer makes decisions and chooses the best access path to
the data. '

A problem exists if it is necessary to track single-valued information about
a project such as the delivery date for the completed project or the budget for
the project. If the EMP-PROJ relation is modified to include these additional
attributes, needless repetition occurs (see Table 6.3).

Notice the attributes delivery_date and budget are single-valued descriptors
of a project (all dates are assumed to be represented as Julian dates, and hence,
are single-valued descriptors). These are repeated for each employee who is
working on a project. Employees 100, 300, and 400 all work on Project A,
and the delivery_date and budget are replicated for each of these tuples. If
an update was required (i.e., the budget increased), it would be necessary to
update each occurrence. To avoid these problems, a third relation is typically
used to store the single-valued data for PROJECT. It would appear as given
(see Table 6.4).

218 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 6.3. Employee-Project (EMP_PROJ)

emp_no | project | delivery_ date budget
100 A 06/30/1997 | $90,000,000
100 B 09/15/1997 | $25,000.000
100 C 03/31/1998 | $60,000.000
200 B 09/15/1997 | $25.000,000
300 A 06/30/1997 | $90.000,000
300 C 03/31/1998 | $60,000.000
400 A 06/30/1997 | $90.000,000

Table 6.4. Project
project | delivery_date | Budget
A 06/30/1997 $90.000.000
B 09/15/1997 $25.000.000
C 03/31/1998 $60.000,000

At this point three relations exist, one to represent the EMP entity, one to
represent the PROJECT entity, and one to represent the relation EMP_PROJ
that exists between the two relations. It should be clear that an update to single-
valued information about a project only involves a single tuple.

Peter Chen, in a seminal paper, described the entity-relationship (ER) dia-
gram in which entities and relationships are defined first, and the actual un-
derlying relations are subsequently defined [Chen, 1976]. Typically, for large
relational systems, an ER diagram is developed to ensure the developers under-
stand all of the relationships between the data. Once complete, a normalized
database design is implemented.

Normalization is the process of ensuring the database design satisfies very
specific rules developed to reinforce the consistency and integrity of the data.
First Normal Form (1NF) simply indicates that data are stored in single-valued
attributes. Our example relation, EMP, is clearly in INE. However, if the name
attribute were expanded to allow the employee’s full first and last name in
the same attribute, this entity would no longer be in INF because the name
attribute would permit the values for both the first and last names to coexist in
a single data element.

A relation is in second normal form (2NF) if all attributes are fully de-
pendent on the primary key of the relation. Our example of the modified
EMP_PROIJ relation is not in 2NF because the attributes of the relation de-
livery_date and budget are not fully dependent on the composite primary key
of emp_number and project. Instead, delivery_date and budget are dependent
solely on the project attribute. An entity is in third normal form (3NF) if all

Integrating Structured Data and Text . ‘ 219

attributes of the entity are dependent on the primary key of the relation and
are not also dependent on another key. The primary key is one or more at-
tributes that uniquely identifies a tuple in a relation. A database should satisfy
at least 3NF.

It should be clear that no a priori linkages exist between any of the relation-
ships, and any linking of relations is done at query processing time rather than
data definition time.

Since the relations are based on set theory, all typical set-theoretic oper-
ations: Cartesian product, union, intersection, and set difference are imple-
mented in the relational model. Additional operations include:

Select—The selection on R[XYZ], denoted as 0 4=q(R), is defined by:
0 a=a(R) = {z|z[A] = a,x € R}

where A is an attribute of R.

Project— The projection on R[XYZ], denoted as 7 A(R), is defined by:

ma(R) = {z[A]|lz € R}

where A is a set of attributes of R.

Join— The join of two relations R[XYZ] and S[VWX] (sharing the common
attribute X) is denoted as:

R[XYZ] X S[VWX] = {z| x[VWX] € S and x[XYZ] € R}

where V, W, X, Y, and Z are a disjoint set of attributes. If no common attribute
exists, the join of R and S is the Cartesian product of Rand S.

When the relational model was first proposed nearly thirty-five years ago,
relational algebra and calculus were used to compute data manipulation. The
select, project, and join operators form a part of relational algebra. Since this
was not very user friendly, two different query languages QUEL and SQL
(originally derived from SEQUEL) were developed. SQL became popular with
IBM'’s adoption in its commercial database system, SQL/DS, in 1982 and with
ANSI’s adoption of the first SQL standard in 1985. Today, SQL is one of the
few standards that is agreed upon by industry, academia, and various interna-
tional standards committees. SQL-2003 was recently adopted [SQL, 2003].

A good overview of SQL can be found in [Date, 1994]. A SQL query has
the structure:

220 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

SELECT <list of attributes>
FROM <list of relations>

[WHERE <list of conditions> |

[ORDER BY <list of attributes> |

[GROUP BY <lIist of attributes>]

[HAVING <list of conditions>]

A list of attributes is specified after the SELECT keyword. The FROM
clause indicates the relations that are used. The WHERE clause describes con-
ditions that must be satisfied for a tuple to be returned. Hence, the entire query
is actually a specification of a result. The following query indicates that only
the employee numbers from the EMP table should be retrieved. It does not,
in any form, indicate how the employee numbers should be retrieved. Another
form includes the addition of a WHERE clause.

SELECT emp_no
FROM EMP

The following query indicates that only tuples with an emp_no of 400 are to
be retrieved. Nothing is indicated as to how to find this tuple. If the system
has a B-tree index on the emp_no attribute, an O(log n) algorithm traverses the
tree and finds all such tuples, otherwise, a linear scan is used. In any event, the
author of the query does not specify the algorithm to use to retrieve these data.

SELECT emp_no
FROM EMP
WHERE emp_no = 400

GROUP BY is used to partition the result set into groups and apply an ag-
gregate function to the group. Aggregate functions in the SQL standard include
COUNT (size of the partition), SUM (the total of an attribute in the partition),
MIN (the smallest value in the partition), MAX (highest value in the partition),
and AVG (average of all values in the partition). If a GROUP BY is not present,
these operators work on the entire result set.

Consider a request to develop a report that contains each employee’s num-
ber and the total number of projects to which they have been assigned. The
following query obtains this information:

Integrating Structured Data and Text 221

SELECT emp_no, COUNT(*)
FROM EMP_PROJ
GROUP BY emp._no

Grouping by the employee number partitions the EMP_PROJ relation into
a partition for each employee. COUNT returns zero if no tuples are found. If
a WHERE clause existed it would specify that the partitions should consider
only the tuples identified by the WHERE clause.

HAVING restricts groups, typically based on an aggregate. The following
query finds all employees who worked on at least 4 projects:

SELECT emp_no, COUNT(*)
FROM EMP_PROJ
GROUP BY emp_no
HAVING COUNT(*) >3

ORDER BY is used to sort the tuples in the order of the attributes specified
in the ORDER BY clause. Since sets do not have any inherent ordering, the
result set of a query may be obtained in an arbitrary order unless the ORDER
BY clause is used. Executing this query results in a list comprising all em-
ployee numbers in ascending order (the DESC option must be used to obtain
descending order).

SELECT emp_no
FROM EMP_PROJ
ORDER BY emp_no

A JOIN is implemented by first specifying multiple relations in the FROM
clause and then adding the JOIN condition in the WHERE clause. The follow-
ing query implements a join to find the age of all employees who worked on
project A.

SELECT a.emp_no, a.age
FROM EMP a, EMP_PROJ b
WHERE a.emp_no = b.emp_no AND
b.project ='A’

This query joins the two relations. Again nothing is said about the join order
or the order in which the WHERE clause is executed.

222 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

6.2 A Historical Progression

Previous work can be partitioned into systems that combine information re-
trieval and DBMS together, or systems that extend relational DBMS to include
information retrieval functionality. We now describe each of these approaches
in detail.

6.2.1 Combining Separate Systems

Several researchers proposed integrated solutions which consist of writing
a central layer of software to send requests to underlying DBMS and infor-
mation retrieval systems [Schek and Pistor, 1982]. Queries are parsed and the
structured portions are submitted as a query to the DBMS, while text search
portions of the query are submitted to an information retrieval system. The
results are combined and presented to the user. It does not take long to build
this software, and since information retrieval systems and DBMS are readily
available, this is often seen as an attractive solution.

The key advantage of this approach is that the DBMS and information re-
trieval system are commercial products that are continuously improved upon
by vendors. Additionally, software development costs are minimized. The dis-
advantages include poor data integrity, portability, and run-time performance.

6.2.1.1 Data Integrity

Data integrity is sacrificed because the DBMS transaction log and the in-
formation retrieval transaction log are not coordinated. If a failure occurs in
the middle of an update transaction, the DBMS will end in a state where the
entire transaction is either completed or it is entirely undone. It is not possible
to complete half of an update.

The information retrieval log (if present) would not know about the DBMS
log. Hence, the umbrella application that coordinates work between the two
systems must handle all recovery. Recovery done within an application is typ-
ically error prone and, in many cases, applications simply ignore this coding.
Hence, if a failure should occur in the information retrieval system, the DBMS
will not know about it. An update that must take place in both systems can
succeed in the DBMS, but fail in the information retrieval system. A partial
update is clearly possible, but is logically flawed.

6.2.1.2 Portability

Portability is sacrificed because the query language is not standard. Presently,
a standard information retrieval query language does not exist. However, some
work is being done to develop standard information retrieval query languages.
If one existed, it would require many years for widespread commercial accep-
tance to occur. The problem is that developers must be retrained each time

Integrating Structured Data and Text 223

a new DBMS and information retrieval system is brought in. Additionally,
system administration is far more difficult with multiple systems.

6.2.1.3 Performance

Run-time performance suffers because of the lack of parallel processing and
query optimization. Although most commercial DBMS have parallel imple-
mentations, most information retrieval systems do not.

Query optimization exists in every relational DBMS. The optimizer’s goal
is to choose the appropriate access path to the data. A. rule-based optimizer
uses pre-defined rules, while a cost-based optimizer estimates the cost of using
different access paths and chooses the cheapest one. In either case, no rules
exist for the unstructured portion of the query and no cost estimates could be
obtained because the optimizer would be unaware of the access paths that may
be chosen by the information retrieval system. Thus, any optimization that
included both structured and unstructured data would have to be done by the
umbrella application. This would be a complex process. The difficulties with
such optimization were discussed by the authors who suggested this approach
[Lynch and Stonebraker, 1988]. Hence, run-time performance would suffer
due to a lack of parallel algorithms and limited global query optimization.

6.2.1.4 Extensions to SQL

Blair, in an unpublished paper in 1974, proposed that SQL (actually a pre-
cursor named SEQUEL) could be modified to support text [Blair, 1974]. Sub-
sequently, a series of papers between 1978 and 1981 were written that de-
scribed several extensions to SQL [Macleod, 1978, Macleod, 1979, Crawford,
1981]. The SMART information retrieval prototype initially developed in the
1980’s used the INGRES relational database system to store its data [Fox,
1983b].

These papers described extensions to support relevance ranking as well as
Boolean searches. The authors focused on the problem of efficiently searching
text in a RDBMS. They went on to indicate that the RDBMS would store the
inverted index in another table thereby making it possible to easily view the
contents of the index. An information retrieval system typically hides the in-
verted index as simply an access structure that is used to obtain data. By storing
the index as a relation, the authors pointed out that users could easily view the
contents of the index and make changes if necessary. The authors mentioned
extensions, such as RELEVANCE(*), that would compute the relevance of a
document to a query using some pre-defined relevance function.

More recently, a language called SQLX was used to access documents in a
multimedia database [Ozkarahan, 1995]. SQLX assumes that an initial cluster-
based search has been performed based on keywords (see Section 3.2 for a
description of document clustering). SQLX extensions allow for a search of

224 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

the results with special connector attributes that obviate the need to explicitly
specify joins.

6.2.2 User-defined Operators

User-defined operators that allow users to modify SQL by adding their own
functions to the DBMS engine were described as early as [Stonebraker et al.,
1983]. Commercialization of this idea has given rise to several products includ-
ing the Teradata Multimedia Object Manager, Oracle Cartridges, IBM DB2
Text Extender, as well as features in Microsoft SQL Server [Connell et al.,
1996, Loney, 1997]. An example query that uses the user-defined area func-
tion is given below. Area must be defined as a function that accepts a single
argument. The datatype of the argument is given as rectangle. Hence, this
example uses both a user-defined function and a user-defined datatype.

EX: 1 SELECT MAX(AREA(Rectangle))
FROM SHAPE

In the information retrieval domain, an operator such as proximity() could
be defined to compute the result set for a proximity search. In this fashion the
“spartan simplicity of SQL” is preserved, but users may add whatever func-
tionality is needed. A few years later user-defined operators were defined to
implement information retrieval [Lynch and Stonebraker, 1988].

The following query obtains all documents that contain the terms term1, term2,
and term3:

EX: 2 SELECT Doc.ld
FROM DOC
WHERE SEARCH-TERM(Text, Terml, Term2, Term3)

This query can take advantage of an inverted index to rapidly identify the
terms. To do this, the optimizer would need to be made aware of the new
access method. Hence, user-defined functions also may require user-defined
access methods.

The following query uses the proximity function to ensure that the three
query terms are found within a window of five terms.

EX: 3 SELECT Doc_ld
FROM DOC
WHERE PROXIMITY(Text, 5, Terml, Term2, Term3)

Integrating Structured Data and Text 225

The advantages of user-defined operators are that they not only solve the
problem for text, but also solve it for spatial data, image processing, etc. Users
may add whatever functionality is required. The key problems with user-
defined operators again are integrity, portability, and run-time performance.

6.2.2.1 Integrity

User-defined operators allow application developers to add functionality to
the DBMS rather than the application that uses the DBMS. This unfortunately
opens the door for application developers to circumvent the integrity of the
DBMS. For user-defined operators to be efficient, they must be linked into the
same module as the entire DBMS, giving them access to the entire address
space of the DBMS. Data that reside in memory or on disk files that are cur-
rently opened, can be accessed by the user-defined operator. It is possible that
the user-defined operator could corrupt these data.

To protect the DBMS from a faulty user-defined operator, a remote proce-
dure call (RPC) can be used to invoke the user-defined operator. This ensures
the operator has access only to its address space, not the entire DBMS address
space. Unfortunately, the RPC incurs substantial overhead, so this is not a
solution for applications that require high performance.

6.2.2.2 Portability

A user-defined operator implemented at SITE A may not be present at SITE
B. Worse, the operator may appear to exist, but it may perform an entirely dif-
ferent function. Without user-defined operators, anyone with an RDBMS may
write an application and expect it to run at any site that runs that RDBMS. With
user-defined operators, this perspective changes as the application is limited to
only those sites with the user-defined operator.

6.2.2.3 Performance

Query optimization, by default, does not know much about the specific user-
defined operators. Optimization is often based on substantial information about
the query. A query with an EQUAL operator can be expected to retrieve fewer
rows than a LESS THAN operator. This knowledge assists the optimizer in
choosing an access path.

Without knowing the semantics of a user-defined operator, the optimizer is
unable to efficiently use it. Some user-defined operators might require a com-
pletely different access structure like an inverted index. Unless the optimizer
knows that an inverted index is present and should be included in path selec-
tion, this path is not chosen.

Lynch’s work discussed information that must be stored with each user-
defined operator to assist with query optimization. For user-defined operators

226 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

to gain widespread acceptance, some means of providing information about
them to the optimizer is needed.

Additionally, parallel processing of a user-defined operator would be some-
thing that must be defined inside of the user-defined operator. The remainder
of the DBMS would have no knowledge of the user-defined operator, and as
such, would not know how to parallelize the operator.

6.2.3 Non-first Normal Form Approaches

Non-first normal form (NFN) approaches have also been proposed [Desai
etal., 1987, Schek and Pistor, 1982, Niemi and Jarvelin, 1995]. The idea is that
many-many relationships are stored in a cumbersome fashion when 3NF (third
normal form) is used. Typically, two relations are used to store the entities that
share the relationship, and a separate relation is used to store the relationship
between the two entities.

For an inverted index, a many-many relationship exists between documents
and terms. One term may appear in many documents, while one document may
have many terms. This, as will be shown later, may be modelled with a DOC
relation to store data about documents, a TERM relation to store data about
individual terms, and an INDEX relation to track an occurrence of a term in a
document.

Instead of three relations, a single NFN relation could store information
about a document, and a nested relation would indicate which terms appeared
in that document.

Although this is clearly advantageous from a run-time performance stand-
point, portability is a key issue. No standards currently exist for NFN collec-
tions. Additionally, NFN makes it more difficult to implement ad hoc queries.

Since both user-defined operators and NFN approaches have deficiencies,
we describe an approach using the unchanged, standard relational model to
implement a variety of information retrieval functionality. This approach was
shown to support integrity and portability while still yielding acceptable run-
time performance [Grossman et al., 1997].

Some applications, such as image processing or CAD/CAM may require
user-defined operators, as their processing is fundamentally not set-oriented
and is difficult to implement with standard SQL.

6.2.4 Bibliographic Search with Unchanged SQL

Blair explored the potential of relational systems to provide typical informa-
tion retrieval functionality [Blair, 1988]. Blair's work included queries using
structured data (e.g., affiliation of an author) with unstructured data (e.g., text
found in the title of a document). The following relations model the document
collection.

Integrating Structured Data and Text 227

s DIRECTORY (name, institution)—identifies the author’s name and the in-
stitution the author is affiliated with.

» AUTHOR(name, Docldy—indicates who wrote a particular document.

» INDEX(term, Docld)—identifies terms used to index a particular docu-
ment

The following query ranks institutions based on the number of publications
that contain input_term in the document.
EX: 4 SELECT UNIQUE institution, COUNT(UNIQUE name)
FROM DIRECTORY
WHERE name IN
(SELECT name
FROM AUTHOR
WHERE Docld IN
SELECT Docld
FROM INDEX
WHERE term = input_term
ORDER BY 2 DESCENDING)

Blair cites several benefits for using the relational model as a foundation for
document retrieval. These benefits are the basis for providing typical informa-
tion retrieval functionality in the relational model, so we will list some of them
here.

= Recovery routines

= Performance measurement facilities

» Database reorganization routines

» Data migration routines

= Concurrency control

» Elaborate authorization mechanisms

» Logical and physical data independence

= Data compression and encoding routines

= Automatic enforcement of integrity constraints

a Flexible definition of transaction boundaries (e.g., commit and rollback)

= Ability to embed the query language in a sequential applications language

228 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

6.3 Information Retrieval as a Relational Application

Work with extensions to SQL started first in an unpublished paper [Blair,
1974] and continued with several papers by Macleod and Crawford between
1978 and 1981 [Macleod, 1978, Crawford, 1981].

Initial extensions described by Macleod are based on the use of a QUERY
(term) relation that stores the terms in the query, and an INDEX (Docld, term)
relation that indicates which terms appear in which documents. The following
query lists all the identifiers of documents that contain at least one term in
QUERY:

Ex: 5 SELEcT DISTINCT{(i.Docld)
FROM INDEX i, QUERY ¢
WHERE i.term = q.term

Frequently used terms or stop terms are typically eliminated from the doc-
ument collection. Therefore, a STOP_TERM relation may be used to store the
frequently used terms. The STOP_TERM relation contains a single attribute
(term). A query to identify documents that contain any of the terms in the
query except those in the STOP_TERM relation is given below:

Ex: 6 SELECT DISTINCT(i.Docld)
FROM INDEX i, QUERY q, STOP_TERM s
WHERE i.term = q.term AND
iterm # s.term

Finally, to implement a logical AND of the terms InputTerml1, InputTerm?,
and InputTerm3, Macleod and Crawford proposed the following query:

EX: 7 SELECT Docld
FROM INDEX
WHERE term = InputTerm]
INTERSECT
SELECT Docld
FROM INDEX
WHERE term = InputTerm?2
INTERSECT
SELECT Docld
FROM INDEX
WHERE term = InputTerm3

The query consists of three components. Each component results in a set of
documents that contain a single term in the query. The INTERSECT keyword

Integrating Structured Data and Text 229

is used to find the intersection of the three sets. After processing, an AND is
implemented.

Macleod and Crawford went on to present extensions for relevance ranking.
The key extension was a corr() function—a built-in function to determine the

similarity of a document to a query.
The SEQUEL (a precursor to SQL) example that was given was:

EXx: 8 SELECT Docld
FROM INDEX i, QUERY q
WHERE i.term = q.term
GROUP BY Docld
HAVING CORR() > 60

Other extensions, such as the ability to obtain the first n tuples in the answer
set, were given. Macleod and Crawford gave detailed design examples as to
how a document retrieval system should be treated as a database application.

We now describe work that relies on the unchanged relational model to
implement information retrieval functionality with standard SQL {Grossman
et al., 1997]. First, a discussion of preprocessing text into files for loading into
a relational DBMS is required.

6.3.1 Preprocessing

Input text is originally stored in source files either at remote sites or locally
on CD-ROM. For purposes of this discussion, it is assumed that the data files
are in ASCII or can be easily converted to ASCII with SGML markers. SGML
markers are a standard means by which different portions of the document are
marked [Goldfarb, 1990]. The markers in the working example are found in
the TIPSTER collection which was in previous years as the standard dataset
for TREC. These markers begin with a < and end with a > (e.g., <TAG>).

A preprocessor that reads the input file and outputs separate flat files is used.
Each term is read and checked against a list of SGML markers. The main
algorithm for the preprocessor simply parses terms and then applies a hash
function to hash them into a small hash table. If the term has not occurred for
this document, a new entry is added to the hash table. Collisions are handled by
a single linked list associated with the hash table. If the term already exists, its
term frequency is updated. When an end-of-document marker is encountered,
the hash table is scanned. For each entry in the hash table a record is generated.
The record contains the document identifier for the current document, the term,
and its term frequency. Once the hash table is output, the contents are set to
NULL and the process repeats for the next document. A variety of experiments
designed to identify the most efficient means of implementing the preprocessor
are given in [Pulley, 1994].

230 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

After processing, two output files are stored on disk. The output files are
then bulk-loaded into a relational database. Each file corresponds to a relation.

The first relation, DOC, contains information about each document.
The second relation, INDEX, models the inverted index and indicates which

term appears in which document and how often the term has appeared.
The relations are:

INDEX(Docld, Term, TermFrequency)
DOC(Docld, DocName, PubDate, Dateline).

These two relations are built by the preprocessor. A third TERM relation
tracks statistics for each term based on its number of occurrences across the
document collection. At a minimum, this relation contains the document fre-
quency (df) and the inverse document frequency (idf). These were described
in Section 2.1. The term relation is of the form: TERM(Term, Idf).

It is possible to use an application programming interface (API) so that the
preprocessor stores data directly into the database. However, for some appli-
cations, the INDEX relation has one hundred million tuples or more. This
requires one hundred million separate calls to the DBMS INSERT function.
With each insert, a transaction log is updated. All relational DBMS provide
some type of bulk-load facility in which a large flat file may be quickly mi-
grated to a relation without significant overhead. Logging is often turned off
(something not typically possible via an on-line API) and most vendors pro-
vide efficient load implementations. For parallel implementations, flat files are
loaded using multiple processors. This is much faster than anything that can
be done with the API.

For all examples in this chapter, assume the relations were initially popu-
lated via an execution of the preprocessor, followed by a bulk load. Notice that
the DOC and INDEX tables are output by the preprocessor. The TERM rela-
tion is not output. In the initial testing of the preprocessor. it was found that
this table was easier to build using the DBMS than within the preprocessor. To
compute the TERM relation once the INDEX relation is created, the following
SQL statement is used:

EX: 9 INSERT INTO TERM
SELECT Term, log(N / COUNT{(*))
FROM INDEX
GROUP BY Term

Integrating Structured Data and Text 231

N is the total number of documents in the collection, and it is usually
known prior to executing this query. However, if it is not known then SELECT
COUNT(*) FROM DOC will obtain this value. This statement partitions the
INDEX relation by each term, and COUNT(*) obtains the number of docu-
ments represented in each partition (i.e., the document frequency). The idf is
computed by dividing N by the document frequency.

Consider the following working example. Input text is provided, and the
preprocessor creates two files which are then loaded into the relational DBMS
to form DOC and INDEX. Subsequently, SQL is used to populate the TERM
relation.

6.3.2 A Working Example

Throughout this chapter, the following working example is used. Two doc-
uments are taken from the TIPSTER collection and modelled using relations.
The documents contain both structured and unstructured data and are given
below.

<DOC>

<DOCNO> W$J870323-0180 </DOCNO>

<HL> Italy’s Commercial Vehicle Sales </HL>

<DD> 03/23/87 </DD>

<DATELINE> TURIN, Italy </DATELINE>

<TEXT>

Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier,

to 8,848 units, according to provisional figures from the Italian Association of Auto Makers.
</TEXT>

</DOC>

<DOC>

<DOCNO> WSJ870323-0161 </DOCNO>

<HL> Who's News: Du Pont Co. </HL>

<DD> 03/23/87 </DD>

<DATELINE> Du Pont Company, Wilmington, DE </DATELINE>
<TEXT>

John A. Krol was named group vice president, Agriculture Products department,
of this diversified chemicals company, succeeding Dale E. Wolf, who will retire
May 1. Mr. Krol was formerly vice president in the Agricultural Products department.
</TEXT>

</DOC>

232 INFORMATION RETRIEVAL:ALGORITHMS AND HE URISTICS

The preprocessor accepts these two documents as input and creates the two
files that are then loaded into the relational DBMS. The corresponding DOC
and INDEX relations are given in Tables 6.5 and 6.6.

Tuble 6.5. DOC
Docld | DocName PubDate | Dateline

1 WSJ870323-0180 | 3/23/87 TURIN, Italy
2 WSJ870323-0161 | 3/23/87 Du Pont Company, Wilmington, DE

Table 6.6. INDEX

Docld | Term TermFrequency
| commercial 1
| vehicle 1
1 sales 1
| italy 1
1 1
1 1
1 1

february
year
according

2 krol

2 president
2 diversified
2 company
2

2

2

succeeding
dale
products

I Bl Bl T I I Y I NY I

INDEX models an inverted index by storing the occurrences of a term in a
document. Without this relation, it is not possible to obtain high performance
text search within the relational model. Simply storing the entire document in a
Binary Large OBject (BLOB) removes the storage problem, but most searching
operations on BLOB’s are limited, in that BLOB’s typically cannot be indexed.
Hence, any search of a BLOB involves a linear scan, which is significantly
slower than the O(log n) nature of an inverted index.

In a typical information retrieval system, a lengthy preprocessing phase oc-
curs in which parsing is done and all stored terms are identified. A posting list
that indicates, for each term, which documents contain that term is identified
(see Section 5.1 for a brief overview of inverted indexes). A pointer from the
term to the posting list is implemented. In this fashion, a hashing function can
be used to quickly jump to the term, and the pointer can be followed to the
posting list. This inverted file technique is so effective that it was used in some
of the earliest structured systems in the mid-1960’s such as TDBMS [Bleir,
1967].

{
|

Integrating Structured Data and Text 233

The fact that one term can appear in many documents and one document
contains many terms indicates that a many-many relationship exists between
terms and documents. To model this, document and term may be thought of
as entities (analogous to employee and project), and a linking relation that de-
scribes the relationship EMP_PROJ must be modeled. The INDEX relation
described below models the relationship. A tuple in the INDEX relation is
equivalent to an assertion that a given term appears in a given document.

Note that the term frequency (if) or number of occurrences of a term within
a document, is a specific characteristic of the APPEARS-IN relationship; thus,
it is stored in this table. The primary key for this relation is (Docld, Term),
hence, term frequency is entirely dependent upon this key.

For proximity searches such as “Find all documents in which the phrase
vice president exists,” an additional offset attribute is required. Without this,
the INDEX relation indicates that vice and president co-occur in the same doc-
ument, but no information as to their location is given. To indicate that vice is
adjacent to president, the offset attribute identifies the current term offset in the
document. The first term is given an offset of zero, the second an offset of one,
and, in general, the nth is given an offset of n — 1. The INDEX_PROX relation
given in Table 6.7 contains the necessary offset attribute required to implement
proximity searches.

Several observations about the INDEX_PROX relation should be noted.
Since stop words are not included, offsets are not contiguously numbered. An
offset is required for each occurrence of a term. Thus, terms are listed multiple
times instead of only once, as was the case in the original INDEX relation.

Table 6.7. INDEX_PROX

Docld | Term Offset
i commercial 0
1 vehicle 1
1 sales 2
1 italy 4
| rose 5
1 february 8
1 year 11
1 makers 26
2 krol 2

To obtain the INDEX relation from INDEX_PROX, the following statement
can be used:

234 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

EX: 10 INSERT INTO INDEX
SELECT Docld, Term, COUNT{(*)
FROM INDEX_PROX
GROUP BY Docld, Term

Finally, single-valued information about terms is required. The TERM relation
(see Table 6.8) contains the idf for a given term. To review, a term that occurs
frequently has a low idf and is assumed to be relatively unimportant. A term
that occurs infrequently is assumed very important. Since each term has only
one idf, this is a single-valued relationship which is stored in a collection-wide
single TERM relation.

Tuble 6.8. TERM

[Term Idf
according 0.9031
commercial | 1.3802
company 0.6021
dale 2.3856
diversified 2.5798
february 1.4472
italy 1.9231
krol 4.2768

president 0.6990
products 0.9542

sales 1.0000

succeeding | 2.6107
vehicle 1.8808
year 0.4771

To maintain a syntactically fixed set of SQL queries for information retrieval
processing, and to reduce the syntactic complexities of the queries themselves,
a QUERY relation is used. The QUERY relation (see Table 6.9) contains a
single tuple for each query term. Queries are simplified because the QUERY
relation can be joined to INDEX to see if any of the terms in QUERY are
found in INDEX. Without QUERY, a lengthy WHERE clause is required to
specifically request each term in the query.

Integrating Structured Data and Text 235

Finally, STOP_TERM (see Table 6.10) is used to indicate all of the terms
that are omitted during the parsing phase. This relation is not used in this
chapter, but illustrates that the relational model can store internal structures
that are used during data definition and population.

Table 6.9. QUERY

Term tf
vehicle | 1
sales 1

Table 6.10. STOP_TERM

[Term |
a
an
and

the

The following query illustrates the potential of this approach. The SQL
satisfies the request to “Find all documents that describe vehicles and sales
written on 3/23/87. The kevword search covers unstructured data. while the
publication date is an element of structured data.

This example is given to auickly show how to integrate both structured data
and text. Most information retrieval systems support this kind of search by
making DATE a “zoned field"—a portion of text that is marked and always
occurs in a particular section or zone of a document. These fields can then be
parsed and stored in a relational structure. Example 6.1.1 illustrates a sequence
of queries that use much more complicated unstructured data, which could not
easily be queried with an information retrieval system,

Ex: 11 SELECT d.Docld
FROM DOC d, INDEX i
WHERE i.Term IN (“vehicle”, “sales”) AND
d.PubDate = “3/23/87” AND
d.Docld = i.Docld

236 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

6.3.3 Boolean Retrieval

A Boolean query is given with the usual operators—AND, OR, and NOT.
The result set must contain all documents that satisfy the Boolean condition.

For small bibliographic systems (e.g., card catalog systems), Boolean queries
are useful. They quickly allow users to specify their information need and re-
turn all matches. For large document collections, they are less useful because
the result set is unordered, and a query can result in thousands of matches. The
user is then forced to tune the Boolean conditions and retry the query until the
result is obtained. Relevance ranking avoids this problem by ranking docu-
ments based on a measure of relevance between the documents and the query.
The user then looks at the top-ranked documents and determines whether or
not they fill the information need.

We start with the use of SQL to implement Boolean retrieval. We then show
how a proximity search can be implemented with unchanged SQL, and finally,
a relevance ranking implementation with SQL is described.

The following SQL query returns all documents that contain an arbitrary
term, InputTerm.

Ex: 12 SELECT DISTINCT(i.Docld)
FROM INDEX i
WHERE i.Term = InputTerm

Obtaining the actual text of the document can now be performed in an applica-
tion specific fashion. The text is found in a single large attribute that contains a
BLOB or CLOB (binary or character large object), possibly divided into sepa-
rate components (i.e., paragraphs, lines, sentences, phrases, etc.). If the text is
found in a single large attribute (in this example we call it Texr), the query can
be extended to execute a subquery to obtain the document identifiers. Then the
identifiers can be used to find the appropriate text in DOC.

EX: 13 SELECT d.Text
FROM DOC d
WHERE d.Docld IN
(SELECT DISTINCT{(i.Docld)
FROM INDEX {
WHERE i.Term = InputTerm)

For the remainder of the section, we are only concerned with obtaining the
document identifiers found in the answer set. Either a separate query may be
executed using the document identifiers in an application specific fashion or
the queries can be extended in the form given in Example 13.

Integrating Structured Data and Text 237

It is natural to attempt to extend the query in Example 12 to allow for n
terms. If the Boolean request is an OR, the extension is straightforward and
does not increase the number of joins found in the query.

EX: 14 SELECT DISTINCT(i.Docld)
FROM INDEX i
WHERE i.Term = InputTerml OR
i.Term = InputTerm2 OR
i.Term = InputTerm3 OR

i.Term = InputTermN

Unfortunately, a Boolean AND results in a dramatically more complex query.
For a query containing n input terms, the INDEX relation must be joined n
times. This results in the following query.

EX: 15 SELECT a.Docld
FROM INDEX a, INDEX b, INDEX c, ... INDEX n — 1, INDEX n
WHERE a.Term = InputTermy AND
b.Term = InputTerm,; AND
c.Term = InputT’erms AND

n.Term = InputTerm, AND
a.Docld = b.Docld AND
b.Docld = c.Docld AND

n — 1.Docld = n.Docld

Multiple joins are expensive. The order that the joins are computed affects
performance, so a cost-based optimizer will compute costs for many of the or-
derings [Elmasri and Navathe, 1994]. Pruning the list is discussed in [Selinger,
1979], but it is still expensive.

In addition to performance concerns, the reality is that commercial systems
are unable to implement more than a fixed number of joins. Although it is
theoretically possible to execute a join of n terms, most implementions impose
limits on the number of joins (around sixteen is common) [White and Date,
1989, McNally, 1997]. It is the complexity of this simple Boolean AND that
has led many researchers to develop extensions to SQL or user-defined opera-
tors to allow for a more simplistic SQL query.

An approach that requires a fixed number of joins regardless of the number
of terms found in the input query is given in [Grossman et al., 1997]. This
reduces the number of conditions found in the query. However, an additional

238 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

sort is needed (due to a GROUP BY) in the query where one previously did
not exist.

The following query computes a Boolean AND using standard syntactically
fixed SQL:

EXx: 16 SELECTi.Docld
FROM INDEX i, QUERY ¢
WHERE i.Term = g.Term
GROUP BY i.Docld
HAVING COUNT(i.Term) =
(SELECT COUNT(*) FROM QUERY)

The WHERE clause ensures that only the terms in the query relation that match
those in INDEX are included in the result set. The GROUP BY specifies that
the result set is partitioned into groups of terms for each document. The HAV-
ING ensures that the only groups in the result set will be those whose cardinal-
ity is equivalent to that of the query relation.

For a query with k terms (¢1,t2, ..., tx), the tuples as given in Table 6.11
are generated for document d; containing all k terms.

Table 6.11. Result Set

Docld | term
d; t
d; t2
d; tx

The GROUP BY clause causes the cardinality, k, of this document to be com-
puted. At this point, the HAVING clause determines if the k terms in this group
matches the number of terms in the query. If so, a tuple d; appears in the final
result set.

Until this point, we assumed that the INDEX relation contains only one
occurrence of a given term for each document. This is consistent with our
example where a term frequency is used to record the number of occurrences
of a term within a document. In proximity searches, a term is stored multiple
times in the INDEX relation for a single document. Hence, the query must
be modified because a single term in a document might occur k times which
results in d; being placed in the final result set, even when it does not contain
the remaining k — 1 terms.

The following query uses the DISTINCT keyword to ensure that only the
distinct terms in the document are considered. This query is used on INDEX
relations in which term repetition in a document results in term repetition in
the INDEX relation.

Integrating Structured Data and Text 239

Ex: 17 SELECTi.Docld
FROM INDEX i, QUERY g
WHERE i.Term = q.Term
GROUP BY i.Docld
HAVING COUNT(DISTINCT{i.Term))
= (SELECT COUNT(*) FROM QUERY)

This query executes whether or not duplicates are present, but if it is known
that duplicate terms within a document do not occur, this query is somewhat
less efficient than its predecessor. The DISTINCT keyword typically requires
a sort.

Using a set-oriented approach to Boolean keyword searches results in the
fortunate side-effect that a Threshold AND (TAND) is easily implemented.
A partial AND is one in which the condition is true if & subconditions are
true. All of the subconditions are not required. The following query returns all
documents that have k or more terms matching those found in the query.

EX: 18 SELECTi.Docld
FROM INDEX i,QUERY q
WHERE i.Term = q.Term
GROUP BY i.Docld
HAVING COUNT(DISTINCT(i.Term)) > k

6.3.4 Proximity Searches

To briefly review, proximity searches are used in information retrieval sys-
tems to ensure that the terms in the query are found in a particular sequence or
at least within a particular window of the document. Most users searching for
a query of “vice president” do not wish to retrieve documents that contain the
sentence, “His primary vice was yearning to be president of the company.”

To implement proximity searches, the INDEX_PROX given in our working
example is used. The offser attribute indicates the relative position of each term
in the document.

The following query, albeit a little complicated at first glance, uses un-
changed SQL to identify all documents that contain all of the terms in QUERY
within a term window of width terms. For the query given in our working ex-
ample, “vice” and “president” occur in positions seven and eight, respectively.
Document two would be retrieved if a window of two or larger was used.

240 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

EX: 19 SELECT a.Docld
FROM INDEX_PROX a, INDEX_PROX b

WHERE a.Term IN (SELECT q.Term FROM QUERY q) AND
b.Term IN (SELECT q.Term FROM QUERY q) AND
a.Docld = b.Docld AND
(b.Offset - a.Offset) BETWEEN 0 AND (width — 1)

GROUP BY a.Docld, a.Term, a.Offset

HAVING COUNT(DISTINCT(b.Term)) =

(SELECT COUNT(*) FROM QUERY)

The INDEX_PROX table must be joined to itself since the distance between
each term and every other term in the document must be evaluated. For a doc-
ument d; that contains k terms (¢, t2, . . ., tx) in the corresponding term offsets
of (01,09, ..., 0), the first two conditions ensure that we are only examining
offsets for terms in the document that match those in the query. The third con-
dition ensures that the offsets we are comparing do not span across documents.
The following tuples make the first three conditions evaluate to TRUE.

In Table 6.12, we illustrate the logic of the query. Drawing out the first
step of the join of INDEX_PROX to itself for an arbitrary document d; yields
tuples in which each term in INDEX_TERM is matched with all other terms.
This table shows only those terms within document d; that matched with other
terms in document d;. This is because only these tuples evaluate to TRUE
when the condition “a.Docld = b.Docld” is applied. We also assume that the
terms in the table below match those found in the query, thereby satisfying the
condition “b.term IN (SELECT q.term FROM QUERY).”

Table 6.12. _Result of Self-Join of INDEX_PROX
a.Docld | aTerm | a.Offset | b.Docld | b.Term | b.Offset
d; ti o1 d; t1 01
d,‘ tl 01 d,’ t2 02
di t 01 d; tk Ok
di t2 02 d; t 01
d; t2 02 d; iz 02
di t2 02 d; tx Ok
d; tk ok d; i 01
d; tk Ok d; to 02
d; tk Ok d; 173 Ok

The fourth condition examines the offsets and returns TRUE only if the
terms exist within the specified window. The GROUP BY clause partitions
each particular offset within a document. The HAVING clause ensures that the
size of this partition is equal to the size of the query. If this is the case, the

Integrating Structured Data and Text 241

document has all of terms in QUERY within a window of size offser. Thus,
document d; is included in the final result set.

For an example query with “vehicle” and “sales” within a two term window,
all four conditions of the WHERE clause evaluate to TRUE for the following
tuples. The first three have eliminated those terms that were not in the query,
and the fourth eliminated those terms that were outside of the term window.
The GROUP BY clause results in a partition in which *“vehicle”, at offset one,
is in one partition and “sales”, at offset two, is in the other partition. The first
partition has two terms which match the size of the query, so document one is
included in the final result set (see Table 6.13).

Table 6.13. Result After All Four Conditions of the WHERE Clause

a.Docld | a.Term | a.Offset | b.Docld | b.Term | b.Offset
1 vehicle i 1 vehicle 1
1 vehicle 1 1 sales 2
[1 [sales T 2 [1 [saless [2]

6.3.5 Computing Relevance Using Unchanged SQL

Relevance ranking is critical for large document collections as a Boolean
query frequently returns many thousands of documents. Recent World Wide
Web search engines such as Google and Yahoo!, as well as commercial infor-
mation retrieval systems such as Convera’s RetrievalWare and Verity’s Topic,
all implement relevance ranking. Numerous algorithms exist to compute a
measure of similarity between a query and a document. We have discussed
many of these variations in Chapter 2.

As we previously mentioned in Section 2.1, the vector-space model is com-
monly used. Systems based on this model have repeatedly performed well at
the Text REtrieval Conference (TREC). Recall, that in the vector space model,
documents and queries are represented by a vector of size ¢, where ¢ is the
number of distinct terms in the document collection (see Section 2.1). The dis-
tance between the query vector Q and the document vector D; is used to rank
documents. The following dot product measure computes this distance:

t
SC(Q,Di) =) wg; x dij

=1

where wg; is weight of the 4t term in the query g, and d;; is the weight of the
7t term in the it* document.

In the simplest case, each component of the vector is assigned a weight
of zero or one (one indicates that the term corresponding to this component
exists). Numerous weighting schemes exist, an example of which is #f-idf.

242 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Here, the term frequency is combined with the inverse document frequency
(see Section 2.2.1). The following SQL implements a dot product query with
the #f-idf weight.

EX: 20 SELECT i.Docld, SUM(q.tf * t.idf * i.tif * r.idf)
FROM QUERY g, INDEX i, TERM ¢
WHERE q.Term = t.Term AND
i.Term = t.Term
GROUP BY i.Docld
ORDER BY 2 DESC

The WHERE clause ensures that only terms found in QUERY are included
in the computation. Since all terms not found in the query are given a zero
weight in the query vector, they do not contribute to the summation. The idf is
obtained from the TERM relation and is used to compute the tf-idf weight in
the select-list. The ORDER BY clause ensures that the result is sorted by the
similarity coefficient.

At this point, we have used a simple similarity coefficient. Many variations
of this coefficient are found in the literature [Salton, 1989]. Unchanged SQL
can be used to implement these coefficients as well. Typically, the cosine co-
efficient or its variants is commonly used. The cosine coefficient is defined
as:

t
> =1 Wejidij

B \/23:1 (di;)? Zﬁ-:l (was)?

SC(Q, D)

The numerator is the same as the dot product, but the denominator requires
a normalization which uses the size of the document vector and the size of
the query vector. Each of these normalization factors could be computed at
query time, but the syntax of the query becomes overly complex. To simplify
the SQL, two separate relations are created: DOC_WT (Docld, Weight) and
QUERY_WT (Weight). DOC_WT stores the size of the document vector for
each document and QUERY_WT contains a single tuple that indicates the size

of the query vector.
These relations may be populated with the following SQL:

EX: 21 INSERT INTO DOC.WT
SELECT Docld, SQRT(SUM(i1f * idf * i.if * r.idf))
FROM INDEX i, TERM 1
WHERE i. Term = t.Term
GROUP BY Docld

Integrating Structured Data and Text 243

EX: 22 INSERT INTO QRY_WT
SELECT SQRT(SUM(q.tf * r.idf * q.tf * v.idf))
FROM QUERY q, TERM ¢
WHERE g.Term = t.Term

For each of these INSERT-SELECT statements, the weights for the vector are
computed, squared, and then summed to obtain a total vector weight. The
following query computes the cosine.

EX: 23 SELECT i.Docld, SUM(q.tf * Lidf * i.ef * ridf) /
(dw.Weight * qw.Weight)
FROM QUERY q, INDEX i, TERM t, DOC_WT dw, QRY_WT gw
WHERE q.Term = t.Term AND
i.Term = t.Term AND
i.Docld = dw.Docld
GROUP BY i.Docld, dw.Weight, qgw.Weight
ORDER BY 2 DESC

The inner product is modified to use the normalized weights by joining the
two new relations, DOC_WT and QRY_WT. An additional condition is added
to the WHERE clause in order to obtain the weight for each document.

To implement this coefficient, it is necessary to use the built-in square root
function which is often present in many SQL implementations. We note that
these queries can all be implemented without the non-standard square root
function simply by squaring the entire coefficient. This modification does not
affect the document ranking as @ < b = a? < b? for a,b > 0. For simplic-
ity of presentation, we used a built-in sqrt function (which is present in many
commercial SQL implementations) to compute the square root of an argument.

Modifications to the SUM() element permit implementation of other sim-
ilarity measures. For instance, with the additional computation and storage
of some document statistics, (log of the average term frequency), some col-
lection statistics (average document length and the number of documents) and
term statistics (document frequency), pivoted normalization and a probabilistic
measure can be implemented.

SQL for the pivoted normalization measure described in Section 2.1.2 and
for the probabilistic measure described in Section 2.2.3 is given in [McCabe
et al., 1999]. Essentially, the only change is that the SUM operator is mod-
ified to contain new weights. The result is that fusion of multiple similarity
measures can be easily implemented in SQL. We will describe the use of a
combination of similarity measures in more detail in Section 8.3.

244 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

6.3.6 Relevance Feedback in the Relational Model

Relevance feedback can be supported using the relational model [Lundquist
et al., 1997]. Recall, relevance feedback is the process of adding new terms to
a query based on documents presumed to be relevant in an initial running of
the query (see Section 3.1). In this work, separate SQL statements were used
for each of the following steps:

Step 1: Run the initial query. This is done using the SQL we
have just described.

Step 2: Obtain the terms in the top n documents. A query of the
INDEX relation given a list of document identifiers (these
could be stored in a temporary relation generated by Step 1)
will result in a distinct list of terms in the top
n documents. This query will run significantly
faster if the DBMS has the ability to limit the number of
tuples returned by a single query (many commercial systems
have this capability). An INSERT-SELECT can be used to
insert the terms obtained in this query into the QUERY relation.

Step 3: Run the modified query. The SQL remains the same as used in
Step I.

6.3.7 A Relational Information Retrieval System

The need to integrate structured and unstructured data led to the develop-
ment of a scalable, standard SQL-based information retrieval prototype engine
called SIRE [Frieder et al., 2000b, Frieder et al., 2003]. The SIRE approach,
initial built for the National Institutes of Health National Center for Comple-
mentary and Alternative Medicine, leverages the investment of the commercial
relational database industry by running as an application of the Oracle DBMS.
It also includes all the capabilities of the more traditional customized infor-
mation retrieval approach. Furthermore, additional functionality common in
the relational database world, such as concurrency control, recovery, security,
portability, scalability, and robustness, are provided without additional effort.
Such functionality is not common in the traditional information retrieval mar-
ket. Also, since database vendors continuously improve these features and
likewise incorporate advances made in hardware and software, a SIRE-based
solution keeps up with the technology curve with less investment on the part
of the user as compared to a more traditional (custom) information retrieval
system solution.

Integrating Structured Data and Text 245

To demonstrate the applicability and versatility of SIRE, key information
retrieval strategies and utilities such as leading similarity measures, proximity
searching, n-grams, passages, phrase indexing, and relevance feedback were
all implemented using standard SQL. By implementing SIRE on a host of re-
lational database platforms including NCR DBC-1012, Microsoft SQL Server,
Sybase, Oracle, IBM DB2 and SQL/DS, and even mySQL, system portability
was demonstrated. Efficiency was enhanced using several optimization ap-
proaches including some described earlier (see Chapter 5) and some specific
to relational database technology. These included the use of a pruned index
and query thresholds as well as clustered indexes. All of these optimizations
reduced the /O volume, hence significantly reduced query execution time. Ad-
ditional implementation details, including a query-processing framework that
supported query and result caching, are found in [Frieder et al., 2000b].

More recent related efforts have focused on scaling the SIRE-based ap-
proach using parallel technology and incorporating efficient document updat-
ing into the paradigm. With the constant changes to text available particularly
in Web environments, updating of the documents is becoming a necessity. Tra-
ditionally, information retrieval was a “read only" environment. Early parallel
processing efforts used an NCR machine configured with 24 processors and
achieved a speedup of 22-fold on [Lundquist et al., 1999]. A later effort at the
University of Tokyo [Goda et al., 2001] demonstrated further scalability using
the SIRE approach on a 100+ node PC cluster. At ETH-Zurich, researchers
showed that the SIRE approach can be used to improve throughput for docu-
ment insertion and update as well as simple retrieval [Grabs et al., 2001].

6.4 Semi-Structured Search using a Relational Schema

Numerous proprietary approaches exist for searching eXtensible Markup
Language (XML) documents, but these lack the ability to integrate with other
structured or unstructured data. Relational systems have been used to support
XML by building a separate relational schema to map to a particular XML
schema or DTD (Document-type Definitions) [Schmidt et al., 2000, Shanmu-
gasundaram et al., 1999]. An approach which uses a static relational schema
was described in [Florescu and Kossman, 1999] and additional support for a
full implementation of an XML query language XML-QL is also described
[Deutsch et al., 1999]. More recently, algorithms that translate XQuery ex-
pressions to SQL were presented [DeHaan et al., 2003].

6.4.1 Background

XML has become the standard for platform-independent data exchange [Bune-
man et al., 1996, Goldman et al., 1999]. There were a variety of methods pro-
posed for storing XML data and accessing them efficiently [Abiteboul, 1997].

246 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

One approach is a customized tree file structure, but this lacks portability and
does not leverage existing database technology [Kanne and Moerkotte, 2000].
Other approaches include building a database system specifically tailored to
storing semi-structured data from the ground up [McHugh et al., 1997, Quass
et al., 1996] or using a full inverted index [Shin, 1998].

There are several popular XML query languages [Luk et al., 2002, Deutsch
et al., 1999, Bonifati and Ceri, 2000]. In August 1997, initial work on XPath,
touted as a basic path-based query language, was submitted to the W3C (World
Wide Web Consortium). In 1998, XML-QL, a query language developed at
AT&T [Deutsch et al., 1999], was designed to meet the requirements of a full-
featured XML query language set out by the W3C. The specification describing
XPath as it is known today was released in 1999. In December 2001, XPath
2.0 was released. One of the newest semi-structured query languages, XQuery,
is also among the most powerful. It borrows many ideas from prior work on
other semi-structured query languages such as XML-QL and XPath, as well as
from relational query languages like SQL. The first public draft of the XQuery
1.0 specification was released in June 2001 and has a current update as of May
2003. [Boag et al., 2003].

6.4.2 Static Relational Schema to support XML-QL

We now briefly describe a static relational schema that supports arbitrary
XML schemas. This was first proposed in [Florescu and Kossman, 1999] to
provide support for XML query processing. Later, in the IIT Information Re-
trieval Laboratory (www.ir.iit.edu), it was shown that a full XML-QL query
language could be built using this basic structure. This is done by translating
semi-structured XML-QL to SQL. The use of a static schema accommodates
data of any XML schema without the need for document-type definitions or
XSchemas.

The static relational storage schema stores each unique XML path and its
value from each document as a separate row in a relation. This is similar to the
edge table described in [Florescu and Kossman, 1999], named for the fact that
each row corresponds to an edge in the XML graph representation. This static
relational schema is capable of storing an arbitrary XML document.

The hierarchy of XML documents is kept in tact such that any document
indexed into the database can be reconstructed using only the information in
the tables. The relations used are:

TAG_NAME (Tagld, tag) ATTRIBUTE (Attributeld, attribute)
TAG_PATH (Tagld, path) DOCUMENT (Docld, fileName)

INDEX (Id, parent, path, type, tagld, attrld, pos, value)

For the remainder of this section, consider once again our sample text.

Integrating Structured Data and Text 247

<DOC>
<DOCNO> WSJ870323-0180 </DOCNO>
<HL> Ttaly’s Commercial Vehicle Sales </HL>
-<DD> 03/23/87 </DD>
<DATELINE> TURIN, ltaly </DATELINE>
<TEXT>
Commercial-vehicle sales in Italy rose 11.4% in February from a year earlier,
1o 8,848 units, according to provisional figures from the Italian Association of Auto Makers.
</TEXT>
</DOC>

<DOC>

<DOCNO> WSJ870323-016) </DOCNO>

<HL> Who’s News: Du Pont Co. </HL>

<DD> 03/23/87 </DD>

<DATELINE> Du Pont Company, Wilmington, DE </DATELINE>
<TEXT>

John A. Krol was named group vice president, Agriculture Products department,
of this diversified chemicals company, succeeding Dale E. Wolf, who will retire
May 1. Mr. Krol was formerly vice president in the Agricultural Products department.
</TEXT>

</DOC>

6.4.3 Storing XML Metadata

These tables store the metadata (data about the data) of the XML files.
TAG_NAME (see Table 6.14) and TAG_PATH (see Table 6.15) together store
the information about tags and paths within the XML file. TAG_NAME stores
the name of each unique tag in the XML collection. TAG_PATH stores the
unique paths found in the XML documents. The ATTRIBUTE (see Table 6.16)
relation stores the names of all the attributes. In our example, we have added
an attribute called LANGUAGE which is an attribute of the tag TEXT. In the
TAG_NAME and TAG_PATH relations, the tag/d is a unique key assigned by
the preprocessing stage. Similarly, attributeld is uniquely assigned as well. As
with our examples earlier in the chapter, these tables are populated each time
anew XML file is indexed. This process consists of parsing the XML file and
extracting all of this information and storing it into these tables.

6.4.4 Tracking XML Documents

Since XML-QL allows users to specify what file(s) they wish to query, many
times we do not want to look at each record in the database but only at a sub-
set of records that correspond to that file. Each time a new file is indexed, it

248 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Table 6.14. TAG_NAME

tagld | tag
10 DOC
11 DOCNO
12 HL
13 DD
14 DATELINE
15 TEXT

Table 6.15. TAG_PATH

tagld | path
10 [DOC]
11 | [DOC, DOCNO]
12 [DOC, HL]
13 [DOC, DD]
14 [DOC,DATELINE]
15 [DOC.TEXT)

Table 6.16. ATTRIBUTE
Attributeld | attribute
7 LANGUAGE

receives a unique identifier that is known as the pin value. This value corre-
sponds to a single XML file. The DOCUMENT relation contains a tuple for
each XML document. For our example, we only store the actual file name that
contains this document. An example of this relation is shown in Table 6.17.
Other relevant attributes might include the length of the document — or the
normalized length [Kamps et al., 2004].

Tuble 6.17. DOCUMENT

docld | fileName
2 doc_0.xml
3 doc_I.xml

Integrating Structured Data and Text 249

6.4.5 INDEX

The INDEX table (see Table 6.18) models an XML index. It contains the
mapping of each tag, attribute or value to each document that contains this
value. Also, since the order of attributes and tags is important in XML (e.g.;
there is a notion of the first occurrence, the second occurrence, etc.), the posi-
tion or order of the tags is also stored.

The id column is a unique integer assigned to each element and attribute in
a document. The parent attribute indicates the id of the tag that is the parent of
the current tag. This is needed to preserve the inherently hierarchical nature of
XML documents.

The path corresponds to the primary key value in the TagPath. The type
indicates whether the path terminates with an element or an attribute (E or
A). The Tagld and Anrld is a foreign key to the Tagld in the TagName and
Attribute tables. The Docld attribute indicates the XML document for a given
row. The pos tracks the order of a given tag and is used for queries that use the
index expression feature of XML-QL and indicates the position of this element
relative to others under the same parent (starting at zero). This column stores
the original ordering of the input XML for explicit usage in users’ queries.
Finally, value contains the atomic unit in XML - the value inside the lowest
level tags. Once we have reached the point of value, all of the prior means of
using relations to model an inverted index for these values apply.

Table 6.18. INDEX

id parent | path |type |tagld Attrld|docld | pos value

41 0 10 E 10 1 6 0 NULL

42 41 |11 E 11 1 6 0 WSJ870323-0180

43 41 12 E 12 1 6 0 Italy’s Commercial...
44 4] 13 E 13 1 6 0 03/23/87

45 41 14 E 14 1 6 0 TURIN, Italy

46 41 15 E 15 1 6 0 Commercial-vehicle ...
47 46 |15 A 15 7 6 0 English

48 0 10 E 10 1 7 0 NULL

49 48 11 E 11 i 7 0 WSJI870323-0161

50 48 12 E 12 i 7 0 Who’s News...

51 48 13 E 13 1 7 0 03/23/387

52 48 14 E 14 1 7 0 Du Pont Co...DE

53 48 |15 E 15 1 7 { John A. Krol .|
54 53 |15 A 15 7 7 o English]

250 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

6.5 Multi-dimensional Data Model

In the preceding two sections, we described methods to use the relational
model as the core storage and retrieval components for an information retrieval
system or an XML-IR system. It is also possible to use a multi-dimensional
data model to provide similar functionality. Such a model inherently supports
hierarchical dimensions and is well suited for natural hierarchies that occur in
some documents. A DOCUMENT dimension might include the hierarchy of
a document (e.g.; document, chapter, section, paragraph, sentence). Two addi-
tional dimensions are LOCATION and TIME. The location of a document and
the publication date of a document are both common in information retrieval
applications. The corresponding hierarchies of LOCATION (e.g.; country, re-
gion, state, city) and TIME (e.g.; year, month, day) are well suited to multi-
dimensional modeling.

Processing of data in a multi-dimensional data model is referred to as OLAP
(On-Line Analytical Processing). ROLAP (Relational OLAP) refers to a multi-
dimensional model that is implemented with a relational database system. Mf)-
LAP refers to a multi-dimensional model that is implemented with a muiti-
dimensional database system. For our discussion it is not important whether
or not ROLAP or MOLAP is used. The key is that we are now able to more
easily represent hierarchical dimensions that naturally occur in text.

Typically, a star schema is used for OLAP applications. Our dimensions:
DOCUMENT, TIME, and LOCATION are arranged in a star around a single
fact table. The fact table is analogous to the INDEX relation we described in
Section 6.3. This table maps a given term to its corresponding dimensions of
DOCUMENT, TIME, and LOCATION.

Once data are represented with a star schema, it can then be migrated to a
ROLAP or MOLAP system. These multi-dimensional systems offer the added
advantage that they more naturally represent hierarchical data often found in a
document collection. Relevance ranking using a MOLAP system is described
in [McCabe et al., 2000].

6.6 Mediators

At this point, we have described a means of integrating structured data,
. semi-structured data and text via the relational model. This approach is able
to harness the power of existing relational systems and provides a means by
which data can be easily integrated when it is practical to store it in a central-
ized repository.

The reality is that some applications require the storage of data in disparate
locations. For text collections in the multi-terabyte range that already have
search engines that access them, it is not realistic to expect that a redundant
copy of these collections will be made in a relational system. Instead, a me-

Integrating Structured Data and Text 251

diator that resides between a user and the data determines which data sources
are most relevant to query, submits the query to those engines that search the
determined relevant sources, and then consolidate the results. If all the sources
are text, this becomes a relatively straightforward metasearch. Metasearch is
simply a search of a set of search engines. If some sources are text, others are
XML, and still others are relational, then a mediator is needed to run on top of
these sources and mediate between the different sources and the user.

In spite of much research, a recent survey of data integration agreed that
integration of structured, semi-structured, and unstructured data remains a key
research problem [Raghavan and Garcia-Molina, 2002]. All of the work done
on mediators is directly focused on this problem. Two types of mediators exist:
Internet mediators and intranet mediators.

6.6.1 Internet Mediators

Internet mediators respond to user queries by issuing a plurality of queries
to search engines on remote Internet sites, consolidate the results returned from
the remote search engines and present these resuits to the user. For example,
a user might have a query about books for sale on the Internet and choose to
query both Waldenbooks and Daltonbooks. The Internet mediator would senc
a request to both sites and come up with a consolidated answer. In the trivial
case, all the sites follow a common schema, but an Internet mediator addresses
the more challenging problem of reconciling disparate schemas at the time of
the query

At present, there are a small number of existing mediator research projects
in the academic world. All of these focus on different areas of the data media-
tion problem. The MIX project, from the University of California at San Diego,
concentrates on schema integration [Baru et al., 1998). Large data collections
are viewed as one large distributed database, wherein all data are represented
as XML documents for which there is a well-formed schema. These data are
queried using XML query languages. A key disadvantage to this approach is
that any legacy data must be made to conform to this schema. This may be rea-
sonable for some small applications, but for multi-terabyte applications, this is
not a viable process. The Tukwila Data Integration system under development
at the University of Washington adopts a similar approach [Ives et al., 1999},
but it too focuses on schema integration only; their primary goal is not to pro-
vide an answer to a user’s question. Stanford’s TSIMMIS project concentrates
on being able to interface with large volumes of data and search them in a
typical Web-search manner [Garcia-Molina et al., 1997].

A mediation infrastructure for digital libraries is described by Melnik, et.
al [Melnik et al., 2000]. This infrastructure allows users to develop wrappers
around various sources and to query all the sources using a common language.
A high-level, query language SDLIP (Simple Digital Library Interoperability

252 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Protocol) is used to query the sources. This requires the user to identify how
to identify the correct sources for a given query.

The mediation infrastructure described by Melinik, et. al avoids many of the
details of numerous unstructured sources. The query language assumes that
users are querying a single document collection; nothing in the query language
facilitates queries over structured or semi-structured data. In many respects,
this mediation infrastructure is similar to the InfoBus in which CORBA was
used to hide details of various unstructured services on the Web [Paepcke et al.,
2000]. In each of these efforts, the core focus is on multiple site result integra-
tion solely. The problem of source selection, a key challenge for a mediator
that must sit on top of numerous sources, is neglected.

Overall, it is difficult for an Internet mediator to accomplish schema rec-
onciliation prior to query execution time. If one source lacks an attribute like
publisher_date and another has this attribute, it is a non-trivial effort to iden-
tify this at the time of the query. Since these sources are completely outside the
control of the mediator, it is not feasible to identify sufficient metadata prior to
the query. With an intranet mediator, the situation is very different. Metadata
- can be defined well in advance of the query and schema reconciliation can be
accomplished as well.

6.6.2 Intranet Mediator

The key to the architecture of an intranet mediator is that all of the schemas
for the data sources are available long before the time of the query. A high-
level sample mediator architecture is given in Figure 6.2.

Essentially, the sample mediator consists of the following key components:
Query Processor: The query processor takes the natural language query and
parses it into key grammatical constructs such as subject, verb, and objects.
Additionally, the query parser performs a part-of-speech tagging operation on
the query to identify the most likely part of speech for each term in the query.
Finally, an entity tagger is used to identify top-level semantic concepts, such
as location, person, place, organization, etc. in the query. These tools are
often used in various question/answering systems, but they lack the efficiency
required to work on enormous document collections. Hence, the mediator only
uses these tools to parse the query. We make the assumption that time exists
to do complex natural language processing on the query, but not the document
collection.

Level O Rules: The first set of rules is referred to as ‘level 0’. These rules
take the syntactic elements in the query and existing metadata lists and identify
higher-level semantic concepts in the query. Consider a course number like
“CS 522", This might be recognized by the two character prefix “CS”, and
then the three digit sequence.

Integrating Structured Data and Text 253
A level O rule might be of the form:

If subject or object = [list of course prefixes] [3 digits]
then subject or object = [COURSE_NUMBER)].

Level I Rules: ‘Level 1’ rules take output from the query processor and
semantic concepts identified by level O rules and map to one or more retrieval
functions which are then used to obtain the actual data that comprise the answer
to the query.

Retrieval Functions: These are small functions, key to the mediator, which
contain the code needed to actually retrieve data from a source. These speak to
the source in the language of the source. For example, a relational source will
communicate using an SQL script, and an XML source might be sent XML-
QL or some other XML query language. This flexibility is a key feature, as
it allows the mediator to easily connect to virtually any type of data source.
Simply stated, if a source can be queried, then the mediator can access itviaa
retrieval function. One might note that the whole game of retrieval from multi-
ple heterogeneous sources is simply one of taking the English query and, from
it, choosing the right retrieval functions. The idea is that the combined efforts
of the rules framework (both level 0 and level 1 rules) enable the selection of
the correct retrieval functions.

Dispatchers: The various source-type dispatchers handle the task of asyn-
chronously invoking the appropriate retrieval functions for the sources that are
deemed appropriate to the query.

Results Manager: The results manager combines the results from the vari-
ous sources with some sources weighted higher than others.

Metadata Analyzers: The mediator also contains analyzers that examine
new input sources and identify key aspects of the source. The analyzers assume
that a source is the actual data. Analyzers exist for structured, unstructured, and
semi-structured data.

6.7 Summary

We discussed several approaches focused on the integration of structured
and text data. To aid the reader, we initially provided a limited review of the re-
lational database model and continued with a historical progression of the data
integration field. We discussed the key concerns involved in data integration—
namely data integrity, portability, and performance—and noted that maintain-
ing and coordinating two separate systems was difficult and expensive to do.

Having motivated the integration of traditional relational database manage-
ment features with traditional information retrieval functionality, we described

254 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Figure 6.2. Intranet Mediator Architecture

Metadata Query Processor Results

Analyzers (_Level 0 Rules) Manager
Level 1 Rules

:

Dispatcher

AN
AN

—

Retrieval Functions ¥ ~ - - R

0P0P0°C0 PPl |

Y y \ 4

. XML Quer
IR Engine Engine Y Database

I I

early efforts that extended relational database management systems with user-
defined operators. These extensions provided information retrieval functional-
ity, but also potentially incurred performance and portability penalties. We then
provided a detailed illustration of the integration of both information retrieval
and relation database functionality using standard, unchanged SQL. Next, we
described an actual implementation, SIRE, of this approach. Subsequently, the
ability to treat XML retrieval as an application of the relational model was ex-
plored. The chapter concluded with a brief discussion of data integration using
multi-dimensional data models and mediators.

6.8 Exercises

1 Using Alice in Wonderland develop a utility to output a file that is suitable
for populating the INDEX relation described in this chapter.

2 Load the output obtained in the preceding exercise into the relational DBMS
of your choice.

Integrating Structured Data and Text 255

3 Implement a simple dot product SQL query to query the data you have just
loaded. Implement ten different queries.

4 Notice that the term Alice is replicated numerous times. Implement a Huff-
man encoding compression algorithm to reduce the space stored for each
term. Reload the INDEX relation and compute the amount of storage over-
head.

5 Show how the probabilistic approach developed by Robertson and Sparck
Jones described in Section 2.2.1 can be implemented as an application of a
relational database system. Repeat this exercise for the approach developed
by Kwok described in section 2.2.4.

Chapter 7

PARALLEL INFORMATION RETRIEVAL

Parallel architectures are often described based on the number of instruction
and data streams, namely single and multiple data and instruction streams. A
complete taxonomy of different combinations of instruction streams and data
was given in [Flynn, 1972]. To evaluate the performance delivered by these
architectures on a given computation, speedup is defined as %, where T is
the time taken by the best sequential algorithm, and T}, is the time taken by
the parallel algorithm under consideration. The higher the speedup, the bet-
ter the performance. The motivation for measuring speedup is that it indicates
whether or not an algorithm scales. An algorithm that has near linear speedup
on sixteen processors may not exhibit similar speedup on hundreds of proces-
sors. However, an algorithm that delivers very little or no speedup on only two
processors will certainly not scale to large numbers of processors.

Multiple Instruction Multiple Data (MIMD) implies that each processing el-
ement is potentially executing a different instruction stream. This is the case
in most of the modern parallel engines. Synchronization is more difficult with
this approach, as compared to a Single Instruction Multiple Data (SIMD) sys-
tem, because one processor can still be running some code while another is
waiting for a message.

In SIMD architectures, all processors execute the same instruction concur-
rently. A controlling master processor sends an instruction to a collection of
slave processors, and they all execute it at the same time on different sequences
of data. SIMD systems are effective when all processors work on different
pieces of data with the same instruction. In such cases, large speedups using
SIMD engines are possible. Some image processing applications, where each
pixel or set of pixels 1s assigned to a processor, are solved efficiently by SIMD
solutions.

258 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

In this chapter, we include only algorithms written for a parallel processor.
We distinguish these algorithms from distributed algorithms since they are fun-
damentally different. A distributed information retrieval algorithm is designed
to satisfy the need to store data in many. physically disparate locations. The
most known example of a distributed information retrieval system is the World
Wide Web (WWW). We discuss this and other distributed information retrieval
systems in Chapter 8. However, with parallel systems, the processing elements
are close to one another—often on the same circuit board.

7.1 Parallel Text Scanning

In parallel pattern match, the text collection consisting of n documents is
partitioned into p partitions (p is typically the number of available processors)
[Evans and Ghanemi, 1988). Each available processor receives a partition of

the text and a copy of the query. A sequential algorithm executes on each

[%] sized portion of text. Once this is done, all of the hits are returned to the

controlling processor. Since it is possible for a pattern to span across two or
more partitions, an additional step is required to check for matches that span
partitions. This extra checking results in additional overhead for the parallel
algorithm.

“Parallel string matching is a simpler case of parallel text scanning, in that
string matching assumes that the text to be searched is completely memory
resident. A survey of parallel string matching algorithms is found in {Breslauer
and Galil, 1991]. This survey describes several different parallel algorithms
that search a text string of size [for a pattern of size k.

The parallel pattern matching algorithm has a key flaw in that patterns which
span partitions result in considerable overhead. For some cases, the parallel al-
gorithm yields no speedup at all. The parallel signature file approach yields
linear speedup over the sequential file, but run time for this algorithm is not
better than the time required to implement a sequential indexing algorithm.
This fact was pointed out by Salton when he implemented this algorithm on a
Connection Machine and a SUN3 [Salton, 1988]. Additionally, Stone used an
analytical model to compute that a sequential machine will outperform a par-
allel machine with 32K processors. This occurs if an inverted index is used for
the sequential matching and the file scan is used on the 32K processor machine
[Stone, 1987]. Another repetition of the theme that information retrieval does
not require enough processing to enable good parallel processing algorithms is
given in [Cockshott, 1989].

Generally, parallel algorithms start with the best sequential algorithm. Com-
paring a parallel scanner to a sequential scanner is not an accurate measure of
speedup, as it is well known that the best sequential algorithms use an inverted
index.

Parallel Information Retrieval 259

7.1.1 Scanning Hardware

Numerous special purpose hardware machines were built to scan text. A
survey of these is found in [Hurson et al., 1990]. We briefly review two of
these as they serve to illustrate the need for this portion of our taxonomy.

7.1.1.1 Utah Retrieval System

The Utah Retrieval System (URS) is implemented as a non-deterministic Fi-
nite State Automata (FSA) with a series of special purpose comparators [Hol-
laar and Haskins, 1984, Hollaar and Haskins, 1991]. The FSA is constructed
so that many non-deterministic paths are explored at the same time; therefore,
it never requires a backward look. The URS is essentially a smart disk con-
troller, as the hardware is placed close to the disk controller so that only data
that match the retrieval criteria are returned to the calling processor. As always,
the motivation behind the special purpose algorithm is run-time performance.
While proximity searching can be done, it is not clear that the URS can be used
to store weights of terms in a document. Hence, this approach has some of the
same problems as a signature-based approach.

Subsequent work with the URS employed an index and a simplified posting
list. This posting list does not contain proximity information so the index is
used simply to identify which documents should be scanned. The FSA is used
to scan the documents to obtain the required response to the query. This scan-
ning step is needed to determine the locations of terms within the document.

71.12 A Data Parallel Pattern Matching Approach

To avoid precomputation of a FSA and to search large blocks of text simul-
taneously a data parallel pattern matching (DPPM) algorithm was developed
[Mak et al., 1991]. In the DPPM algorithm, a block of data is compared against
a sequential serial portion of the pattern. Sequentially characters of the search
pattern are compared individually against an entire block of text. Given the
high degree of mismatch between the pattern and the block of text an “early-
out” mismatch detection scheme flushes the entire block of text. This occurs
once a match with the pattern is no longer possible. This early mismatch detec-
tion mechanism greatly reduces the total search processing time as redundant
comparisons are avoided.

An architecture that relied on multiple individual DPPM search engines to
identify document offsets where the pattern matches were found was outlined.
Based on simple computations and the predetermined offsets, the required in-
formation retrieval operators proposed for the Utah Retrieval System were sup-
ported. A VLSI realization of the DPPM engine, and a corresponding analysis
of the global architecture, was presented. The analysis demonstrated a poten-
tial search rate of one gigabyte of text per second.

260 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Bailey et al. examined parallel search on the PADRE system, a distributed
in-memory pattern matching system, and explored the issues of scaling it to
one terabyte [Bailey and Hawking, 1996). Additionally, their scaling approach
partitioned data to many CPUs of a virtual machine — an approach that has
since been shown to not always be reasonable [Chowdhury and Pass, 2003].

7.1.2 Parallel Signature Files

Several approaches have been used to parallelize the scanning of signature
files. Since a signature file can be scanned in an arbitrary order, this structure
is inherently parallelizable.

7.1.2.1 Connection Machine

An early algorithm developed for the Connection Machine used signature
files to represent documents [Stanfill and Kahle, 1986]. Details of sequential
algorithms that use text signatures are described in Section 5.3.

Several signatures are stored in each processing element. Each processing
element is assigned signatures only for a single document. The reason for this
is that it was assumed that a document would not expand beyond a single pro-
cessing element. A query is processed by generating the bitmap for a term
in the query and broadcasting it to all processors. Each processor checks the
bitmap against the list of signatures. When a match occurs, the mailbox in
the processing element that corresponds to the document is updated with the
weight of the query term. Document weights due to repetition within a docu-
ment are lost because the signature does not capture the number of occurrences
of a word in a document. However, a global weight across the document col-
lection is used.

Once all the signatures are scanned, the documents are ranked by doing a
global maximum of all mailboxes. The processors whose mailboxes contain
the global maximum are then zeroed, and the global maximum is repeated.
This continues until the number of documents that should be retrieved is ob-
tained.

The commercial implementation of this algorithm contained several refine-
ments [Sherman, 1994]. The actual values for the signatures for the CM were:

w = 30 words per signature
s = 1024 bits in a signature
¢ = 10 hash functions used to code a word

Fifty-five signatures were placed in a single processing element. The as-
sumption that one processing element maps to-a corresponding signature is re-

Parallel Information Retrieval 261

moved. Additionally, weights are not done by document. They are computed
for signature pairs. The idea being that a sixty word radius is a better document
segment to rank than an entire document. Hence, a weight is maintained for
each signature.

To resolve a query, the top one hundred query weights were used. The
bitmap for the query was generated as before, and rapid microcode was used
to quickly check the corresponding ¢ bits in the signature. Whenever a query
term appeared to match a signature, the corresponding weight was updated ap-
propriately. Once the signature match was complete, the signature pairs were
then combined using a proprietary scoring algorithm that averaged the weights
of the two signatures. The use of signature pairs made it possible to incorporate
proximity information into the relevance ranking. Some interprocessor com-
munication occurs to obtain the single signature part that crosses a document
boundary (both above and below the processing element). However, the over-
head for these two processor “sends” is low because it occurs only between
adjacent processors.

The algorithm was completely memory resident, as the application queried
a news wire service in which only the most recent news articles were used
in retrieval. As documents aged, they were exported from the CM to make
room for new documents. Several million documents could then be stored in
memory and run-time performance was routinely within one to three seconds.

7.1.2.2 Digital Array Processor (DAP)

Signatures were used initially in the Digital Array Processor (DAP) by us-
ing a two-phased search. Many of the parallel algorithms are based on a bit
serial implementation of the sequential algorithms given in [Mohan and Wil-
lett, 1985]. In this algorithm, signatures are assigned by using a term dictio-
nary and setting a single bit in the signature for each term. The 1024 bit-long
signatures are distributed to each processor (4096 processors). Hence, 4096
documents are searched in parallel. The query is broadcast to each processor.
Since only one bit is set per term, the number of matching bits is used as a
measure of relevance. This uses the assumption that a bit match with the query
indicates a match with the term. Since several terms can map to the same bit
in the signature, this is not always true.

To verify that a match really occurs, a second phase begins. In this phase, a
pattern matching algorithm is implemented, and the document is examined to
compute the number of terms that really match. This is done sequentially and
only for the documents that ranked highly during the first phase. Performance
of the algorithm is claimed to be “good,” but no specific results are presented
[Pogue and Willett, 1987].

262 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

7.1.2.3 HYTERM

Another approach by Lee, HYbrid TExt Retrieval Machine (HYTERM),
uses a hybrid approach between special-purpose search hardware and parti-
tioned signature files, which can be done via hardware or software [Lee, 1995].
This architecture employs a signature file using superimposed signatures to
identify possible matches to a Boolean request. Once this is done, the false
hits are removed either by a software scan or a special-purpose pattern match
device.

Signatures are partitioned such that each partition has a certain key or por-
tion of the signatures. This saves memory as the signatures in a given parti-
tion need not store the partition key. The key is checked quickly to determine
whether or not the entire partition must be searched. The partitions are stored
in memory, and are spread across the processors or, as Lee calls them signature
modules, as they are filled. Initially, only one signature module is used. Once
it is full, a single-bit key is used, and the signatures are partitioned across two
processors. The process continues until all free processors are full, then new
ones can be added and the process can continue indefinitely.

The actual text is stored across numerous small texts. Once the signature
modules have identified candidate documents to be checked for false drops,
the text processing modules retrieve the document from a disk. It is noted that
by spreading the documents across numerous disks, the resilience to failure
improves. When a disk is down, it only means a few documents will be inac-
cessible. The overall query will still work, it will Just have lower precision and
recall than if the disk had been working. Documents are uniformly distributed
to the disks, either by hashing or round-robin allocation.

7.1.2.4 Transputers

Two algorithms were developed with transputers in the early 1990’s [Cringean
et al., 1990, Cringean et al., 1991]. The first was a term-based algorithm in
which only full terms were encoded in a signature, the second algorithm uses
trigrams (overlapping three character sequences—see Section 3.4) to respond
to wildcard searches.

Another signature-based algorithm was implemented on a transputer net-
work. Transputers essentially serve as building blocks to an arbitrary parallel
interconnection network, and are often distributed as a chip in which links are
present that can be connected to other transputers. For this approach, differ-
ent interconnection networks were tested, but ultimately a triple chain network
was used in which a master processor sends messages to three separate linear
arrays. Using only a single linear array, data transmission requires on the order
of p steps, where p is the number of processors.

A two-phased algorithm is again used. In this first phase, a master pro-
cessor sequentially scans signatures for each document. The documents that

Parallel Information Retrieval 263

correspond to signature matches are then distributed to the p processors, and a
sequential string matching algorithm is implemented on each of the p proces-
sors. In this work, a modified Boyer-Moore algorithm by Horspool is used for
sequential string matching [Horspool, 1983].

During one performance test, the signatures were eliminated and only string
matching was done. For this test with fifteen processors, a speedup of 12.6 was
obtained. Additional tests with varying signature lengths were conducted. For
larger signatures, fewer false hits occur. Thus, less string matching in parallel
is needed. With 512 bit signatures, fifteen processors only obtained a speedup
of 1.4 because only thirteen percent of the original document collection were
searched.

Additional tests were done with signatures based on trigrams instead of
terms. Each trigram was hashed to a single bit. The pattern-matching algo-
rithm implemented on each processor was modified to search for wildcards.
These searches include symbols that indicate one or more characters will sat-
isfy the search (e.g., a search for “st«” will find all strings with a prefix of
“st”). Initial speedups for trigram-based signatures were only 2.1 for fifteen
processors. This poor speedup was caused by the sequential signature match
in the first phase of the algorithm. To alleviate this, additional transputer com-
ponents were added so that two and then four processors were used to scan the
signature file in parallel. With four transputers for the parallel signature match,
speedup improved to 4.5 for twelve processors.

Another term-based transputer algorithm is found in [Walden and Sere,
1988]. In this work, a master processor sends the query to each of the proces-
sors where all “relevant” documents are identified and returned to the master
for final ranking. “Relevant” is defined as having matched one of the terms
in the query. Document signatures are used to save storage, but no work is
done to avoid false hits. The interesting aspect of this work is that three dif-
ferent interconnection networks were investigated: ring, linear array, and tree.
Speedups for a 10 megabyte document collection with a ring interconnection
network were almost linear for up to fifteen processing elements, but fell to
only 6.14 for sixty-three processing elements. Essentially, the test collection
was too small to exploit the work of the processing elements. In a tree struc-
ture, sixty-three processing elements yielded a speedup of 7.33.

7.2 Parallel Indexing

Yet another approach is to parallelize the inverted index. The idea is to par-
tition the index such that portions of the index are processed by different pro-
cessors. Figure 7.1 illustrates an inverted index that was partitioned between
two processors. This is intrinsically more difficult, in that simply partitioning
the index and sending an equal number of terms to each of the p processors
does not always result in equal amounts of work. Skew in posting list size

264 INFORMATION RETRIEVAL:ALGORITHMS AND HE URISTICS

poses a difficult problem. Nevertheless, parallel index algorithms were devel-
oped for the Connection Machine, the DAP, and some others. We discuss these
algorithms in this section.

Figure 7.1. Partitioning an Inverted Index

Index Posting Lists
r

Processor 2
B ER - g
N AR R

_Processor 1

7.2.1 Parallel Indexing on a Connection Machine

The signature-based algorithm did not improve on the best sequential algo-
rithm, so a new approach based on an inverted index was developed. Both an
entirely memory resident index and a disk-based index were constructed [Stan-
fill et al., 1989]. The posting lists were sequences of document identifiers that
were placed in a two dimensional array. Mapping between posting list entries,
and placement within a two dimensional array was defined. The entries of the
posting were allocated one at a time, starting with the first row and moving
to the second row only after the first row was full. This has had the effect of
allocating data to the different processors (since each column is processed by
an individual processor) in a round-robin fashion.

"'Consider a posting list with terms ¢;, t,, and t3. Assume t; occurs in doc-
uments d; and dy. The posting list for this term will be stored in the first two
positions of row zero, in an array stored in memory. Assume ¢, occurs in doc-
uments d; and d3, and t3 occurs in documents di, do, and ds. For these three
terms, the 2 x 4 dimensional array shown in Table 7.1 is populated.

Parallel Information Retrieval - _ 265

Table 7.1. Parallel Storage of Posting Lists

1{2(1]3
1(2]3

Using this approach a row of 1024 postings can be processed in a single step
if all processors are used. A full row is referred to as a stripe. Since the terms
have been scattered across the array, it is necessary to track which entries map
to a given posting list. A second array is used for this purpose. It holds an
entry for the term followed by a start row, a start column, and a length for the
posting list. The start row and column indicate the first location in the posting
list that corresponds to the term. Continuing our example, the index table for
the terms 0, 1, and 2 is given in Table 7.2.

The first row of this entry indicates that term ¢, contains a posting list that
starts at position [0,0] and continues to position [0,1] of the two dimensional
posting list array given in Table 7.2. This can be inferred because the row-at-
a-time allocation scheme is used. .

A query of n terms is processed in n steps. Essentially, the algorithm is:

doi=1ton
curr_row = index(i)
for j = 1 to row_length do in parallel
curr_doc_id = doc_id(curr_row)
score(curr_doc_id) = score(curr_doc_id) + weight(curr_row)
end
end

This is only a sketch of the algorithm. Extra work must be done to deactivate
processors when an entire row is not required (a bit mask can be used to deacti-
vate a processor). Additionally, for long posting lists, or posting lists that start
at the end of a stripe, more than one row must be processed during a single
iteration of the inner loop.

Table 7.2. Mapping of Index Terms to Posting List Entries

Term | Start Row | Start Column | Length
t 0 0 2
t2 0 2 2
i3 1 0 3

266 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

For each query term, a lookup in the index is done to determine which stripe
of the posting list is to be processed. Each processor looks at its entry for the
stripe in the doc_id. It is this doc_id whose score must be updated, as the entry
in the posting list implies that the term in the query is matched by a term in
this document. A one-dimensional score array (referred to as a “mailbox” in
the original algorithm) is updated. This one-dimensional array is distributed as
one element to each processor, so each processor corresponds to a document.
For a document collection with more documents than processors a “virtual
processor” must be used. (Note: There will never be more than one update
to the score element as the posting list only contains one entry for each term-
doc appearance). The final ranking is done with a global maximum to find
the highest-ranked element of the score array and to successively mask that
element. This can be repeated until all documents have been retrieved.

This algorithm obtains good speedup when a posting list uses an entire
stripe. The problem is that often a stripe is only being used for one or two
entries. A posting list containing one entry results in 1023 processors doing
nothing while one processor issues the update to the score array. The posting
table can be partitioned by node [Stanfill, 1990, Stanfill and Thau, 1991] to
accommodate clusters of processors (or nodes). This facilitates the movement
of data from disk into the posting array.

One node consists of thirty-two processors. The problem is that if the post-
ing list entries are arbitrarily assigned to nodes based on a document range
(i.e., node one receives postings for documents zero and two, while node two
receives postings for documents one and three) it is conceivable that one node
can have substantially more postings than another. To avoid this problem, the
nodes are partitioned such that each partition contains a range of term identi-
fiers. Occasionally, empty space occurs in a partition as there may be no data
for a given range of terms in a particular range of documents. It can be shown
that for typical document collections, eighty to ninety percent of the storage is
used. This partitioned posting list yields improved speedup as the number of
idle processors is reduced.

7.2.2 Inverted Index on the Connection Machine

The previous algorithm processed one query term at a time. Parallel pro-
cessing was done to update the ranking, but even with optimal processor uti-
lization (fully used stripes), the time taken for a query of ¢ terms is on the order
of O(t). An approach that allows logarithmic time is given in [Asokan et al.,
1990]. The algorithm consists of the following steps:

Step 1: Partition the set of processors into clusters. Each cluster works on a
single query term.

Parallel Information Retrieval 267

Step 2: Each cluster simultaneously references the index to determine the post-
ing list that corresponds to its own cluster. Hence, cluster 1 obtains the posting
list for term 1, cluster 2 obtains the posting list for term 2, etc.

n

Step 3: Use all p processors to merge the | p] posting lists, where n is the
number of documents. This effectively produces a sorted list of all documents
that are referenced by the terms in the query. Since the posting list contains
the weight. a document weight appears as well. Hence, a merged posting list
might appear as:

< D1,0.5 >< D1,0.3 >< D2,0.5 >< D2,0.9 >.

This posting list occurs if document one contains two query terms with
weights of 0.5 and 0.3, respectively, and document two contains two terms
with weights of 0.5 and 0.9 respectively.

Step 4: Use all processors to eliminate duplicates from this list and generate a
total score. After this step, our posting list appears as:

< D1,08 >< D2,1.4>

Step 5: Sort the posting list again based on the score assigned to each docu-
ment. Our posting list will now appear as:

< D2,1.4>< D1,0.83 >

A modified bitonic sort can be done to merge the lists so the complexity of
the algorithm is O(log, t) time. This appears superior to the O(t) time, but it
should be noted that the algorithm requires O([%1) processors assigned to a
cluster to process a single posting list for a given term. If too many terms exist,
it may be necessary to overlay some of the operations.

723 Parallel Indexing on a Digital Array Processor (DAP)

As with the Connection Machine, an earlier scanning algorithm that uses
term signatures on the DAP, was replaced with an indexing algorithm [Red-
daway, 1991, Bond and Reddaway, 1993]. :

The key difference between the DAP algorithm and the CM algorithm is
that a compressed posting list is used. Additionally, the algorithm running on
the DAP is claimed to be more efficient as the DAP uses a simpler interconnec-
tion network (a mesh instead of a hypercube) and the global operations such as
global maximum are substantially faster. Since no really remote “send” oper-
ations are done, the authors of the DAP approach claim that it is not necessary
to have a hypercube.

The compression scheme is based on the observation that large hit lists often
have the same leading bits. Consider a hit list that contains documents 8, 9, 10,

268 INFORMATION RETRIEVAL:ALGORITHMS AND HE URISTICS

11,12, 13, 14, and 15. The binary values all have a leading bit of 1 (1000, 1001,
1010, 1011, 1100, 1101, 1110, and 1111). By allocating one bit as a block
indicator, the hits within the block can be stored in three bits. Hence, block 1
would contain the references (000, 001,010,011, 100, 101,110, and 111). The
total bits for the representation changes from (8)(4) = 32t0 1 + (8)(3) = 25.
Clearly, the key to this representation is the number of hits within a block.
For the DAP, a 24-bit code (no compression) is used for rare terms (those
that occur only once in every 50,000 documents). For terms that appear more
frequently, an 8-bit block code with a 16-bit offset within the block (the block
holds up to 64K) references entries in the posting list. Finally, for the most
frequent terms, a 64K document block is treated as 256 separate sub-blocks.
A key difference in the parallel algorithm for the DAP is that the expansion of
the posting list into an uncompressed form is done in parallel. Performance
of the DAP-based system is claimed to be 200 times faster than the previous
sequential work. Other experiments using 4096 processors indicate the DAP
610 yields a significant (over one hundred times faster) improvement over a
VAX 6000 [Manning, 1989, Reddaway, 1991].

7.2.4 Partitioning a Parallel Index

An analytical model for determining the best means of partitioning an in-
verted index in a shared nothing environment is given in [Tomasic and Garcia-
Molina, 1993]. Three approaches were studied. The first, referred to as the
System approach, partitioned the index based on terms. The entire posting list
for term a was placed on disk 1, the posting list for term b was placed on disk
2, etc. The posting lists were assigned to disks in a round-robin fashion.

Partitioning based on documents was referred to as the disk strategy. In
this approach, all posting list entries corresponding to document 1 are placed
on disk 1, document 2 on disk 2, etc. Documents were assigned to disks in
a round-robin fashion. Hence, to retrieve an entire posting list for term q, it
Is necessary to retrieve the partial posting lists from each disk for term a and
merge them. Although the merge takes more time than the system entry, the
retrieval can take place in parallel.

The host strategy partitioned posting list entries for each document and
placed them on separate processors. Hence, document 1 is sent to processor 1,
document 2 to processor 2, etc.

An analytical model was also developed by fitting a frequency distribution
to some text (a more realistic approach than blindly following Zipf’s Law). The
results of the analytical simulation were that the Aost and disk strategy perform
comparably, but the system strategy does not perform as well. This is because
the system strategy requires sequential reading of potentially long posting lists
and transmission of those lists. The System strategy becomes competitive when
the communication costs were dramatically reduced.

Parallel Information Retrieval 269

7.2.5 A Parallel Inverted Index Algorithm on the CM-5

Another algorithm on the CM-5 is described in [Masand and Stanfill, 1994].
In this work, the documents were distributed to sixty-four different processors
where a compressed inverted index was built for each of the processors. Con-
struction of the inverted index was extremely fast. In twenty minutes, a 2.1
gigabyte document collection was indexed, and the size of the index file was
only twenty-four percent of the size of the raw text.

Queries were processed by sending the query to each of the processors and
obtaining a relevance ranking for each processor. Once obtained, a global max-
imum was computed to determine the highest ranked document among all the
processors. This document was ranked first. The global maximum computa-
tion was repeated until the number of documents that were to be retrieved was
reached.

7.2.6 Computing Boolean Operations on Posting Lists

Another area in which parallel processing is used in conjunction with an
inverted index is the computation of Boolean operations on two posting lists,
A and B [Bataineh et al., 1989, Bataineh et al., 1991]. The posting lists are
partitioned so that the total number of elements in each partition is of equal
size. The Boolean computation is obtained by computing the Boolean result
for each partition. There is no need to compare values located in one partition
with another because the partitions are constructed such that each partition
contains values within a specific range and no other partition contains values
that overlap within that range. This partitioning process can be done in parallel.

Once the partitions are identified, each one is sent to a separate process-
ing element. Subsequently, each processing element individually computes
the Boolean result for its values. Finally, the results are obtained and stored
on disk. The algorithm was originally implemented on the NCUBE/4 and
the Intel iPSC/2. For posting lists corresponding to term human and English
of 520,316 and 115,831 postings, respectively (the MEDLINE database was
used), speedups of five for an eight processor NCUBE were observed and a
speedup of seven for a sixteen processor IPSC were obtained. It was noted
that the parallel algorithm began to degrade as. the number of processors in-
creased. As this happens, the amount of work per processor is reduced and
communication overhead is increased.

7.2.7 Parallel Retrieval as an Application of an RDBMS

One of the motivating factors behind the development of an information re-
trieval engine as an application of the relational database model (see Chapter
6) was the availability of commercial parallel database implementations. Exe-

270 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

cuting the SQL scripts that implement the information retrieval application on
a parallel relational database engine results in a parallel implementation of an
information retrieval system.

In [Grossman et al., 1997], the feasibility of implementing a parallel infor-
mation retrieval application as a parallel relational database application was
demonstrated. From these findings, it was hypothesized that it was possible
to develop a scalable, parallel information retrieval system using parallel rela-
tional database technology.

To validate this hypothesis, scaling experiments were conducted using a
twenty-four processor database engine [Lundquist et al., 1999]. The initial
findings were, however, disappointing. Using the same relational table def-
initions described in [Grossman et al., 1997], only a forty percent processor
efficiency was achieved.

The parallel hardware used (the NCR DBC/1012) for the experiments sup-
ports automatic load balancing. The hashing scheme used to implement the
load balancing is based on the index structure in the defined relational schema.
In the DBC/1012 architecture used to evenly distribute the load, a uniformly
distributed set of attributes must be the input to the hashing function. In the
initial implementation, the hashing function was based on terms, and thus, was
nonuniform. Modifying the input to the hashing function to include docu-
ment identifiers, as well as terms, resulted in a uniform distribution of load
to the processors. In later experimentation, a balanced processor utilization
of greater than 92% was demonstrated, and a speedup of roughly twenty-two
using twenty-four nodes, as compared to a comparable uniprocessor imple-
mentation, was achieved.

7.2.8 Summary of Parallel Indexing

Parallel processing within information retrieval is becoming more applica-
ble as the cost of parallel /O is reduced. Previous algorithms had problems
with memory limitations and expensive communication between processors.
Signature files were popular, but have not been used recently due to their un-
necessarily high I/0O demand and their inability to compute more sophisticated
measures of relevance. Parallel inverted index algorithms are becoming more
popular, and with improved compression techniques, they are becoming sub-
stantially more economical.

7.3 Clustering and Classification

Parallel clustering and classification implementations were developed for
the Intel Paragon [Ruocco and Frieder, 1997]. Using a production machine, the
authors developed a parallel implementation for the single-pass clustering and
single-link classification algorithms (see Section 3.2). Using the Wall Street

Parallel Information Retrieval 271

Journal portion of the TREC document collection, the authors evaluated the
efficiency of their approach and noted near-linear scalability for sixteen nodes.

More recently, the popular and effective Buckshot clustering algorithm [Cut-
ting et al., 1992] was also parallelized {Jensen et al., 2002]. This parallel al-
gorithm was developed for use on a low-cost cluster of PC’s, and uses MPI
for communication. No specialized parallel hardware is needed. The authors
tested this algorithm using larger, more modern TREC document collections
and demonstrated near-linear scalability in terms of number of nodes and col-
lection size.

To accurately compare the efficiency of the developed approaches, the re-
sults derived from both the parallel and serial implementations must be iden-
tical. Otherwise, an improvement in the efficiency of the algorithm (via paral-
lelism) could come at the expense of accuracy.

The single-pass clustering algorithm is data, presentation, and order depen-
dent. Namely, the order in which the data are presented as input directly affects
the output produced. Thus, it was necessary to provide mechanisms in the par-
allel implementation that mimicked the order of the presentation of the docu-
ments as input to the algorithm. Guaranteeing the identical order of document
presentation resulted in the formation of identical clusters in both the serial
and parallel implementations. The authors noted that the size of the clusters
varied dramatically and suggested measures to reduce the cluster size dispar-
ity. Since the size disparity is a consequence of the single-pass algorithm, no
modification was made.

7.4 Large Parallel Systems

There has been some work towards developing large, general-purpose par-
allel IR systems. This section details efforts for some of the most prominent
ones. An overview of some work on parallel information retrieval systems can
be found in [MacFarlane et al., 1997].

7.4.1 PADRE - A Parallel Document Retrieval Engine

The PADRE system for parallel document retrieval was initially developed
for text retrieval on the Fujitsu AP1000 system. Over the years, it has been de-
veloped into a modemn search system, and currently forms the core of CSIRO’s
Panoptic Enterprise search engine. At its core, PADRE is a distributed, in-
memory pattern-matching system that also supports relevance ranking. The
architecture has evolved over the years, first being developed for the AP1000
system as outlined in [Hawking, 1991, Hawking, 1994b, Hawking, 1994a, Bai-
ley and Hawking, 1996}, and later being applied to tasks as esoteric as XML
retrieval in the recent INEX competition [Hawking et al., 2000, Craswell et al.,
2002, Vercoustre et al., 2002].

272 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Bailey et al. examined parallel search on the PADRE system and explored
the issues of scaling it to one terabyte [Bailey and Hawking, 1996]. Addition-
ally, their scaling approach partitioned data to many CPUs of a virtual machine
— an approach that has since been shown to not always be reasonable [Chowd-
hury and Pass, 2003].

7.4.2 Frameworks for Parallel IR

Some work has been done investigating what frameworks would be most
suitable to performing Parallel IR on Symmetrical Multiprocessors[Lu et al.,
1997]. A mutithreaded, multitasking search engine was built to investigate the
most efficient way to execute parallel queries. In addition, a simulator supports
the varying of system parameters such as number of CPUs, threads, and disks,
and compared the results of the simulator to those of their implementation.
Using this approach, bottleneck points were identified. At this points, no ad-
ditional resources such as threads, CPUs, and disks do not provide any further
scalability. Generally, scalable retrieval performance was found for a variety
of system coafigurations.

7.4.3 PLIERS - Portable Parallel IR using MPI

Researchers at Microsoft Research Cambridge have also developed a par-
allel information retrieval system called PLIERS [MacFarlane et al., 1999].
This system makes use of the MPI parallel appiication framework to create a
portable parallel IR system [Gropp and Lusk, 1998]. The PLIERS system con-
tains parallelized versions of the Indexing, Document Search, Document Up-
date, and Information Filtering modules of the Okapi uniprocessor IR system
[Robertson, 1997}, made parallel via the use of standard MPI communication
procedures. In addition, the system supported several modes of search, in-
cluding Boolean and Proximity search, passage retrieval, and relevance-based
search. Also, several different MPI implementations found that there were
some 1mplementation-specific differences, but nothing that impeded portabil-
itv. Eventually, the system was ported to many different architectures such as
a Network of Workstations (NOW), the Fujitsu AP1000 and AP3000 parallel
machines, a cluster of PC’s, and an Alpha farm. The authors conclude that
there is a performance gain to be had by parallel IR systems designed in this
way, and in particular they found that MPI collective operations improve query
transactions for IR and term-selection in information filtering.

7.5 Summary

As volumes of data available on-line continued to grow, information re-
tricval solutions needed to be developed that could cope with ever expanding
collections. Towards addressing this data growth explosion, parallel solutions

Parallel Information Retrieval 273

were investigated. Initially, parallel information retrieval solutions focused
on hardware-based full-text filtering. Eventually, these hardware solutions
gave way to software implementations that roughly mirrored the hardware ap-
proaches. Recent parallel efforts are mostly algorithmic and architecturally
independent.

We began our review by describing parallel text scanning techniques. We
described two hardware solutions for full-text scanning, the Utah Retrieval
System and the data paralle]l data matching system. Both systems supported
hardware-level filtering to reduce the retrieved document sets. Although they
did demonstrate significant improvements as compared to software full-text
scanning, in general, full-text scanning introduces excessive /O demands as
all documents must be scanned. Later efforts using the Utah Retrieval System
relied on indexing. However, most recent architectures use general purpose
processors since they are able to more quickly incorporate enhancements. This
has reduced the popularity of special purpose solutions.

Later efforts developed software supported text scanning. To reduce the 1/0
demands associated with full-text scanning, most efforts focused on signature
analysis. Early studies relied on SIMD architectures, namely the DAP archi-
tecture and the Connection Machine. Results demonstrated limited scalability
in terms of performance. Later signature analysis efforts were evaluated on
MIMD systems such as the Inmos Transputers with somewhat better results.

The prohibitive /O demands of text scanning approaches, both full-text
and signature analysis, resulted in the development of parallel indexing ap-
proaches. The need for index-based approaches was clearly demonstrated in
[Stone, 1987] where it was shown that serial computers using indexing tech-
niques sustained faster retrieval speeds than parallel engines using a signature
analysis approach. Parallel indexing approaches on both SIMD and MIMD ar-
chitectures were developed, with some efforts resulting in near linear speedup.

We then described parallelizations of both clustering and classification al-
gorithms. The approaches described were implemented on an Intel Paragon
that was in production use. For all the algorithms studied, near linear speedup
was noted.

We concluded this chapter with a brief discussion of Parallel Search Sys-
tems. Parallel information retrieval continues to be a relatively unexplored
area. Parallel, scalable algorithms that efficiently support the strategies dis-
cussed in Chapter 2 and the utilities listed in Chapter 3 need to be developed.
Currently, very few such algorithms are known, and even fewer, have been
implemented and evaluated in a production environment.

A different approach to developing parallel information retrieval systems
was addressed in [Lundquist et al., 1999]. In these efforts, a mapping from
information retrieval operators onto parallel databases primitives was defined.
Parallelism was achieved without requiring new parallel algorithms to be de-

274 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

veloped. Roughly a 22-fold speedup using twenty-four nodes was achieved.
Such speedup is encouraging, and especially so, since it was unnecessary to
implement new software.

Given the diversity of the commercially available parallel systems and the
vast types of applications that constitute the realm of information retrieval, all
that is clear is that it is still an open question of how best to support the domain
of parallel information retrieval.

7.6 Exercises

1 Develop an average-case algorithmic analysis for a sequential inverted in-
dex for a tf-idf vector space query with ¢ terms. Compare this to a parallel
linear scan of a document collection with p processors.

2 Develop an algorithm to search an inverted index in parallel with a MIMD
machine that will perform as well as or better than the sequential algorithm.
Analyze your algorithm and clearly describe your analysis.

3 Design a simple parallel document clustering algorithm and analyze its per-
formance. Compare this to a sequential document clustering algorithm.

Chapter 8

DISTRIBUTED INFORMATION RETRIEVAL

Until now, we focused strictly on the use of a single machine to provide an
information retrieval service. In Chapter 7, we discussed the use of a single
machine with multiple processors to improve performance. Although efficient
performance is critical for user acceptance of the system, today, document col-
lections are often scattered across many different geographical areas. Thus, the
ability to process the data where they are located is arguably even more impor-
tant than the ability to efficiently process them. Possible constraints prohibiting
the centralization of the data include data security, their sheer volume prohibit-
ing their physical transfer, their rate of change, political and legal constraints,
as well as other proprietary motivations. For a comprehensive discussion from
a data engineering perspective on the engineering of data processing systems
in a distributed environment, see [Shuey et al., 1997].

One of the latest popular processing infrastructures is the “Grid" [Foster
et al., 2001, Foster, 2002, Alliance, 2004]. The grid is named after the global
electrical power grid. In the power grid, appliances (systems in our domain)
simply “plug in" and immediately operate and become readily available for use
or access by the global community. A similar notion in modern search world is
the use of Distributed Information Retrieval Systems (DIRS). DIRS provides
access to data located in many different geographical areas on many different
machines (see Figure 8.1).

In the early 1980’s, it was already clear that distributed information retrieval
systems would become a necessity. Initially, a theoretical model was devel-
oped that described some of the key components of a distributed information
retrieval system. We describe this model in Section 8.1.

In Section 8.2, we also briefly discuss Web search engines. We note that a
Web search engine is really just an implementation, albeit a very popular one,
of some of the algorithms and efficiency techniques already discussed in this

276 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Figure 8.1. Distributed Document Retrieval

Documents
at site 1
‘ : Documents
! Result
| .
1 Inl;zr;id L > Set - at site 2
9 (Titles) j}

Documents
at site n

book. We do not include the specifics of any particular engine as such details
are not only often proprietary but are constantly changing. Had we chosen to
provide such details, they would be obsolete by the time our book appeared
in press. Furthermore, by including such details we would turn this chapter
into an endorsement of a particular engine, and that would be inappropriate
and outside of the scope of this book. We do note, however, that a thorough
listing of search engines is available at www.searchenginewatch.com. Several
popular Web engines include Google, Yahoo!, MSN Search, and AOL Search.

Finally, Section 8.4 concludes this chapter with a brief description of Peer-
to-Peer (P2P) efforts. Such efforts are currently only in their relative infancy.
In future editions of this book, we hope to better describe the advancement in
this now fledgling specialty.

8.1 A Theoretical Model of Distributed Retrieval

We first define a model for a centralized information retrieval system and
then expand that model to include a distributed information retrieval system.

Distributed Information Retrieval 277

8.1.1 Centralized Information Retrieval System Model

Formally, an information retrieval system is defined as a triple, I = (D, R, 8)
where D is a document collection, R is the set of queries, and §; : R; — 2D;
is a mapping assigning the j2 query to a set of relevant documents.

Many information retrieval systems rely upon a thesaurus, in which a user
query is expanded, to include synonyms of the keywords to match synonyms
in a document. Hence, a query that contains the term curtain will also include
documents containing the term drapery.

To include the thesaurus in the model, it was proposed in [Turski, 1971] that
the triple be expanded to a quadruple as:

I=(T,D,R,6)

where T is a set of distinct terms and the relation p C T x T such that p(t1, t2)
implies that ¢; is a synonym of to. Using the synonym relation, it is possible to
represent documents as a set of descriptors and a set of ascriptors. Consider a
document D, the set of descriptors d consists of all terms in D; such that:

» Each descriptor is unique

= No descriptor is a synonym of another descriptor

An ascriptor is defined as a term that is a synonym of a descriptor. Each as-
criptor must be synonymous with only one descriptor. Hence, the descriptors
represent a minimal description of the document.

In addition to the thesaurus, a generalization relation over the sets of descrip-
tors is defined as v C d x d where ~(t1,t2) implies that ¢, is a more general
term than t,. Hence, y(animal, dog) is an example of a valid generalization.

The generalization relation assumes that it is possible to construct a hierar-
chical knowledge base of all pairs of descriptors. Construction of such knowl-
edge bases was attempted both automatically and manually [Lenat and Guha,
1989], but many terms are difficult to define. Relationships pertaining to spa-
tial and temporal substances, ideas, beliefs, etc. tend to be difficult to represent
in this fashion. However, this model does not discuss how to construct such
a knowledge base, only some interesting properties that occur if one could be
constructed.

The motivation behind the use of a thesaurus is to simplify the description
of a document to only those terms that are not synonymous with one another.
The idea being that additional synonyms do not add to the semantic value of
the document. The generalization relation is used to allow for the processing
of a query that states “List all animals" to return documents that include infor-
mation about dogs, cats, etc. even though the term dog or car does not appear
in the document.

278 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

The generalization can then be used to define a partial ordering of docu-
ments. Let the partial ordering be denoted by < and let t(d;) indicate the list
of descriptors for document d;. Partial ordering, =<, is defined as:

t(dy) 2 t(dz) & (Vt' € t(d1))(3t" € t(d2))(v(t', "))

Hence, a document d; whose descriptors are all generalizations of the de-
scriptors found in dy will have the ordering d; < ds. For example, a document
with the terms animal and person will precede a document with terms dog and
John. Note that this is a partial ordering because two documents with terms
that have no relationship between any pairs of terms will be unordered.

To be inclusive, the documents that correspond to a general query q; must
include (be a superset of) all documents that correspond to the documents that
correspond to a more specific query ¢z, where ¢; < ¢o. Formally:

(q1,92 € Q) A (g1 X q2) — (6(q1) D 6(g2))

The model described here was proven to be inclusive in [Turski, 1971]. This
means that if two queries, q; and ¢y, are presented to a system such that ¢, is
more general than go, it is not necessary to retrieve from the entire document
collection for each query. It is only necessary to obtain the answer set for q;,
d(q1), and then iteratively search §(g;) to obtain the d(go).

8.1.2 Distributed Information Retrieval System Model

The centralized information retrieval system can be partitioned into n local
information retrieval systems S;, Sy, ..., S, [Mazur, 1984]. Each system S;
is of the form: S; = (T}, D;, R;, 0;), where Tj is the thesaurus; D; is the
document collection; R; the set of queries; and 6, : R; — 2% maps the
queries to documents.

By taking the union of the local sites, it is possible to define the distributed
information retrieval system as:

S = (T.D.R,d)

where:

T =
J

T
1

s;=s[\(Tj x T}). R; = R[)(d; x d;)

This states that the global thesaurus can be reconstructed from the local the-
sauri, and the queries at the sites j will only include descriptors at site ;. This

Distributed Information Retrieval 279

is done so that the terms found in the query that are not descriptors will not
retrieve any documents.

n
D=|JD;
j=1

The document collection, D, can be constructed by combining the document
collection at each site.

n
RD U Rj, ;== ﬂ(Rj x R;)
j=1

The queries can be obtained by combining the queries at each local site. The
partial ordering defined at site j will only pertain to queries at site j.

(Vr € R)(6(r) =d:d € D AT = t(d))

For each query in the system, the document collection for that query contains
documents in the collection where the documents are at least as specific as the

query.

The hierarchy represented by v is partitioned among the different sites. A
query sent to the originating site would be sent to each local site and a local
query would be performed. The local responses are sent to the originating
site where they are combined into a final result set. The model allows for this
methodology if the local sites satisfy the criteria of being a subsystem of the
information retrieval system.

Si = (Th, Dy, Ry, 61) is a subsystem of Sy = (T3, D2, Ra, &2) if:
(Ty D To) A (R1 = Ra) [\(d1 x d2) A (s1 = 82) ((T1 x T2)
The thesaurus of T3 is a superset of 1.
D, D> D,
The document collection at site Sy contains the collection Ds.
Ry € RoA =1==2 [(R1 x R2)
The queries at site 51 contain those found in Ss.
o (r) = 52(r)ﬂD1for renR
The document collection returned by queries in & will include all documents

returned by queries in 5>, The following exampic iilustrates that an arbitrary
sartition of a hierarchy im0t w0 wid i or e,

280 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

Consider the people hierarchy:
7¥(people, Harold), y(people, Herbert), y(people, Mary)
and the second animal hierarchy:

Y(animal, cat), y(animal, dog), ¥(cat, black-cat),
7(cat, cheshire), v(dog, doberman),
v(dog, poodle)

Assume that the hierarchy is split into sites S; and So. The hierarchy at S is:

y(people, Harold), y(people, Mary)
~(animal, cat), v(animal, dog), v(dog, doberman), v(dog, poodle)

The hierarchy at Ss is:

~(people, Herbert), y(people, Harold)
7y(animal, cat), y(animal, doberman), ~(cat, cheshire), y(cat, black-cat)

Consider a set of documents with the following descriptors:

Dy = (Mary, Harold, Herbert)

D3 = (Herbert, dog)

D3 = (people, dog)

Dy = (Mary, cheshire)

D5 = (Mar}’, dOg)

D¢ = (Herbert, black-cat, doberman)
D7 = (Herbert, doberman)

A query of the most general terms (people, animal) should return all docu-
ments 2 through 7 (document 1 contains no animals, and the query is effec-
tively a Boolean AND). However, the hierarchy given above as S; will only
retrieve documents D3 and Ds, and S, will only retrieve documents Dg and
D>. Hence, documents D» and Dy are missing from the final result if the local
results sets are simply concatenated. Since, the document collections cannot
simply be concatenated, the information retrieval systems at sites S, and So
fail to meet the necessary criterion to establish a subsystem.

In practical applications, there is another problem with the use of a general-
ization hierarchy. Not only are they hard to construct, but also it is non-trivial
to partition them. This distributed model was expanded to include weighted
keywords for use with relevance [Mazur, 1988].

Distributed Information Retrieval 281

8.2 Web Search

No chapter on distributed information retrieval would be complete without
some mention of Web search engines. Search tools that access Web pages via
the Internet are prime examples of the implementation of many of the algo-
rithms and heuristics discussed in this book. These systems are, by nature,
distributed in that they access data stored on Web servers around the world.
Most of these systems have a centralized index, but all of them store pointers
in the form of hypertext links to various Web servers.

These systems service tens of millions of user queries a day, and all of them
index several Terabytes of Web pages. We do not describe each search engine
in vast detail because search engines change very frequently (some vendors
produce new releases or publish fixes in a week). We note that sixteen dif-
ferent Web search engines are listed at www.searchenginewatch.com while
www.searchengineguide.com lists over 2,500 specialized search engines.

8.2.1 Evaluation of Web Search Engines

As will be discussed in Section 9, in traditional information retrieval envi-
roriments, individual systems are evaluated using standard queries and data.
In the Web environment, such evaluation conditions are unavailable. Further-
more, manual evaluations on any grand scale are virtually impossible due to
the vast size and dynamic nature of the Web. To automatically evaluate Web
search engines, a method using online taxonomies that were created as part of
Open Directory Project (ODP) is described in [Beitzel et al., 2003b]. Online
directories were used as known relevant items for a query. If a query matches
either the title of the item stored or the directory file name containing a known
item then it is considered a match. The authors compared the system rankings
achieved using this automated approach versus a limited scale, human user
based system rankings created using multiple individual users. The two sets of
rankings were statistically identical.

8.2.2 High Precision Search

Another concern in evaluating Web search engines is the differing measures
of success as compared to traditional environments. Traditionally, precision
and recall measures are the main evaluation metrics, while response time and
space requirements are likely addressed. However, in the Web environment,
response time is critical. Furthermore, recall estimation is very difficult, and
precision is of limited concern since most users never access any links that ap-
pear beyond the first answer screen (first ten potential reference links). Thus,
Web search engine developers focus on guaranteeing that the first results screen
is generated quickly, is highly accurate, and that no severe accuracy mismatch
exists. For example, in [Ma et al., 2003], text is efficiently extracted from

282 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

template generated Web documents; the remainder of the frame or frames are
discarded to prevent identifying a document as relevant as a result of poten-
tially an advertisement frame matching the query. In [Beitzel et al., 2004a},
efficient, high-precision measures are used to quickly sift and discard any item
that is not with great certainty relevant as a top-line item to display in a current
news listing service.

8.2.3 Query Log Analysis

In summary, although similar and relying on much the same techniques as
used in traditional information retrieval system domains, the Web environment
provides for many new opportunities to revisit old issues particularly in terms
of performance and accuracy optimizations and evaluation measures of search
accuracy. In that light, recently, an hourly analysis of a very large topically cat-
egorized Web query log was published [Beitzel et al., 2004b]. Using the results
presented, it is possible to generate many system optimizations. For example,
as indicated in the findings presented, user request patterns repeat accordirg
to the time of day and day of week. Thus, depending on the time of day aa
day of week, it is possible to pre-cache likely Web pages in anticipation f 4
set of user requests. Thus, page access delays are reduced increasing system
throughput. Furthermore, in terms of accuracy optimization, it is likewise pos-
sible to adjust the ranking measures to better tune for certain anticipated user
subject requests. In short, many optimizations are possible. What optimiza-
tions can you come up with using such logs? What measures would you use
to demonstrate success? We are sure that in the next edition of the book, many
such measures and optimizations will be described.

8.24 Page Rank

We close this section on Web search with the most popular algorithm for
improving Web search. This PageRank algorithm (named after Page) was first
described in [Brin and Page, 2000]. It extends the notion of hubs and authori-
ties in the Web graph originally described in [Kleinberg, 1999]. PageRank is at
the heart of the popular Web search engine, Google. Essentially, the PageRank
algorithm uses incoming and outgoing links to adjust the score of a Web page
with respect to its popularity, independent of the user’s query. Hence, if a tra-
ditional retrieval strategy might have previously ranked two documents equal,
the PageRank algorithm will boost the similarity measure for a popular docu-
ment. Here, popular is defined as having a number of other Web pages link to
the document. This algorithm works well on Web pages, but has no bearing on
documents that do not have any hyperlinks. The calculation of PageRank for
page A over ail pages linking to it Dy... D, is defined as follows:

Distributed Information Retrieval 283

PageRank(A) = (1 —-d) +d Z W
5D C(Di)

where C(D;) is the number of links out from page D; and d is a dampening
factor from O-1. This dampening factor serves to give some non-zero PageR-
ank to pages that have no links to them. It also smooths the weight given to
other links when determining a given page’s PageRank. This significantly af-
fects the time needed for PageRank to converge. The calculation is performed
iteratively. Initially all pages are assigned an arbitrary PageRank. The calcu-
lation is repeated using the previously calculated scores until the new scores
do not change significantly. For the example in Figure 8.2, using the com-
mon dampening factor of 0.85 and initializing each PageRank to 1.0, it took 8
iterations before the scores converged.

Figure 8.2. Simple PageRank Calculation

| < emasn—
D1 DZ
Pagerank=0.59 Pagerank=0.40

DS
Pagerank=0.32

8.2.5 Improving Effectiveness of Web Search Engines

Using a Web server to implement an information retrieval system does not
dramatically vary the types of algorithms that might be used. For a single
machine, all of the algorithms given in Chapter 5 are relevant. Compression
of the inverted index is the same, partial relevance ranking is the same, etc.
However, there were and are some efforts specifically focused on improving
the performance of Web-based information retrieval systems.

In terms of accuracy improvements, it is reasonable to believe that by send-
ing a request to a variety of different search engines and merging the obtained

284 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

results one could improve the accuracy of a Web search engine. This indeed
was proposed as early as TREC-4 . Later, in the CYBERosetta prototype [De-
santis et al., 1996] system developed by the Software Productivity Consortium
(SPC) for use by DARPA, identical copies of a request were simultaneously
sent to multiple search servers. After a timeout limit was reached, the obtained
results were merged into a single result and presented to the user.

8.3 Result Fusion

Fusing result sets as a means to improve accuracy became of wide academic
research interest shortly after Lee [Lee, 1997] hypothesized on what conditions
yielded successful fusion. That is, Lee used several common result fusing
heuristics to merge results obtained from multiple independent search engines
and demonstrated that relevant documents had a greater level of overlap than
the set of non-relevant documents. His findings demonstrated that using the
CombMNZ fusion heuristic resulted in higher retrieval accuracy than any of
the individual search engines used. Aloui, et. al. expanded the work of Lee
and concluded that to best capitalize on result fusion techniques, the individ-
tal search engines used had to greatly differ in their processing strategies and
utilities [Alaoui et al., 1998].

Recently, in [Chowdhury et al., 2001, Beitzel et al., 2003a] a study revisiting
the Lee fusion hypothesis was conducted. In this study, unlike in Lee’s original
study, all the system parameters, e.g., stemmers, parsers, stop-word list, etc.,
were kept constant and only the similarity measures used were varied. Fur-
thermore, also unlike the Lee study, only the top existing similarity measures
were used. The results demonstrated that the overlap difference between rel-
evant and non-relevant documents that Lee described was far less significant
when these new measures were used. Surprisingly, it was other system param-
eters that affected the overall fusion gains with greater impact than the initially
postulated similarity measured used.

This observation relied upon using newly available highly accurate similar-
ity measures. From the findings, it was postulated that over the years, given
the accuracy improvement of the similarity measures, there remained only an
insignificant difference between the result sets obtained using any of the bet-
ter measures. Given only a slight difference between the result sets available,
fusion, at least in that form, yielded only minimal improvements if not an ac-
tual reduction in retrieval accuracy. This makes sense when one considers that
retrieval strategies have evolved over time to include useful features that were
first generated for use with another strategy. Incorporation of term frequency
and document length are now common across all retrieval strategies. Hence,
as these strategies have evolved, it is not too surprising that they return very
similar documents. This certainly reduces the likelihood that fusing retrieval
strategies will yield improved effectiveness.

Distributed Information Retrieval 285

In terms of efficiency, in [Liu et al., 1996], an effort to enhance Web server
performance improvements is described. They discussed the use of pre-started
processes, or cliettes, to avoid the start-up costs of starting processes from a
typical common gateway interface (CGI). This was used to implement a pro-
totype system that provides search access to eight library collections.

Most current Web servers use a very detailed, full-text index, but if the Web
continues to grow it may not be practical to use a single index. Early work
in the area of Web-based distributed query processing was done by [Duda and
Sheldon, 1994] in which a system that used the Wide Area Information Service
(WAIS) only sent queries to certain servers based on an initial search of the
content of those servers. The content was described by some specific fields in
the documents that exist on each server such as headline of a news article or
subject of an e-mail message. The use of a content index is the middle ground
between sending the request to all of the servers, or providing a very detailed
full-text index, and sending the request to only those servers that match the
index.

More work done for the Glossary-of-Servers Server (GIOSS) builds a server
that estimates the best server for a given query, based on the vector-space
model [Gravano and Garcia-Molina, 1995]. The query vector is matched with
a vector that characterizes each individual server. The top n servers are then
ranked and searched. Several means of characterizing a server are explored.
The simplest is to sum the tf-idf weights of each term on a given server and
normalize based on the number of documents on the server. This yields a cen-
troid vector for each server. A tf-idf vector space coefficient (as described in
Section 2.1) can then be used to rank the servers for a given query. Differ-
ent similarity coefficient thresholds at which a server is considered a possible
source and assumptions used to estimate which databases are likely to contain
all of the terms in the query are also used. It is estimated that the index on the
GIOSS server is deemed to be only two percent of the size of a full-text index.

Query processing using a full-text index on a Web server can be done with
any of the combination of strategies and utilities described in Chapters 2 and
3. However, an additional strategy based on the use of hypertext links found
on Web pages has been investigated [Yuwono and Lee, 1996]. In this work,
a strategy referred to as vector spreading activation Was investigated in which
documents were ranked based on a maich with a term in a simple query. Ad-
ditionally, documents that contained links to the original result set were added
to the result set. The weight of the new linked documents was scaled to be less
than the weight of the documents in the original result set. Experiments with
scaling factors of zero and 0.5, with increments of 0.1, showed that 0.2, was
the best scaling factor. Vector spreading activation was shown to be slightly
better than #f-idf when average precision was measured for a small test collec-
tion of only 2,393 Web pages. Additionally, this system did not use a full-text

286 INFORMATION RETRIEVAL:ALGORITHMS AND HEURISTICS

index. The indexer uses only HTML tokens such as terms in boldface or ital-
ics, the first sentence of every list item, titles, all-level headings, and anchor
hypertexts.

What, by necessity, differs in the Web based search engine domain from the
traditional information retrieval system environment is the means to evaluate
individual systems. In conventional environments, a standard benchmark query
and data mix is used to compare across systems. In the Web domain, however,
each search engine indexes only a portion of the available data, and the portions
do not necessarily overlap nor do they necessarily index even the same version
(different time period) of the data where they do indeed overlap.

8.4 Peer-to-Peer Information Systems

We now turn our focus to an emerging field, a cross between the network-
ing domain and the information retrieval discipline, namely Peer-to-Peer (P2P)
architectures. By definition, Peer-to-Peer architectures are distributed environ-
ments where each node in the network is potentially a source for information
(a server), a client in need of information (a client), and an intermediate router
(a router) of information. Each node is independent and the system operates in
a purely decentralized manner. In the realm of information retrieval systems,
the provided resources are in the form of searchable data.

The main characteristics of P2P systems are their ad-hoc nature and durabil-
ity. P2P systems can gracefully handle the joining and leaving of nodes from
the system. The resources offered by these nodes are dynamically added or re-
moved from the system as necessary. Furthermore, the failure of a single node
does not destroy the overall system.

The origin of the P2P movement is often attributed to Napster, the music file
sharing system, although Napster actually relied on a centralized implementa-
tion. That is, Napster was not decentralized, and hence, was not peer-to-peer in
the pure sense of the definition. However, Napster did offer P2P functionality
in that users could dynamically share files with others. Besides the inherent
single point of contention in terms of performance and reliability, Napster’s
centralized implementation eventually doomed it to legal action, and today,
Napster no longer exists in its original form. The demise of Napster taught en-
thusiasts a lesson. In response, they created the Gnutella protocol [V0.4, 2004],
which is truly P2P, and serves as the basis of much of today’s P2P research.
(A later version of the Gnutella protocol [V0.6, 2004] also exists and extends
P2P architectures to include hierarchies. This protocol and its applications are
discussed later.) '

Systems based on the Gnutella (Version 0.4) protocol generally provide only
primitive search capability. That is, they generally rely on exact name search
typically accomplished via sub-string matching. Specifically, a query matches
afile if all the terms in the query are sub-strings of the file’s metadata. Files that

